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Executive Summary 
 

Extreme weather events can cause critical community services to fail. Municipalities use 
knowledge of past droughts, floods and heat waves to reduce the risk of service failure in the 
future. However, using the past to plan for future climate extremes may no longer be sufficient. 
Climate in the southwest has changed over the last century. The decade 2001–2010 was the 
warmest and the fourth driest in the Southwest of all decades from 1901 to 2010 (Hoerling et 
al. 2013). In response, municipalities, including water purveyors, are using information from 
climate models to develop scenarios of what the climate, including extreme weather events, 
could be like in the future. While regional observations are valuable, advances in climate 
science have made it possible to project future climate scenarios at a more localized scale. The 
results from this study provide a range of locally specific future climate conditions that may be 
used to support future planning studies. 
 
The Southern Nevada Water Authority (SNWA) contracted scientists with the California Nevada 
Applications Program (CNAP)1 to evaluate and summarize climate data for their service area. 
This report examines and summarizes historical and projected future climate data specific to 
Clark County, Nevada. These analyses rely on local weather station information and data from a 
select suite of global climate models (GCMs) that best represent local, historical climate 
conditions.  
 
The study is comprised of three main components: 
 

1. Compilation and summary of historical, local climate data 
2. Selection of representative GCMs, and 
3. Evaluation and summary of future projections 

Compilation and Summary of Historical, Local Climate Data 
 
Historical temperature and precipitation records from six stations in Clark County, were 
examined for trends and changes in long-term variability. Warming temperatures in Clark 
County are consistent with warming trends observed nationally and globally. The magnitude 
and pace of local warming is largely driven by warmer nighttime temperatures (i.e. daily 
minimum temperatures “Tmin”), although a weaker upward trend in daytime temperatures (i.e. 
daily maximum temperatures “Tmax”) is also present at some of the stations. The increase in Tmin 
at McCarran Airport is the strongest of all stations and is likely strongly influenced by the urban 
heat island effect (Figure E-1). The shoulder seasons (spring and fall) have the largest year-to-
year temperature variability, meaning they are less predictable using the thirty-year average 
(e.g. climatology) (Figure E-2).  

                                                        
1 CNAP is a National Oceanic and Atmospheric Administration, Regional Integrated Sciences and Assessments 
(NOAA-RISA) team, at Scripps Institution of Oceanography at the University of California San Diego 
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Figure E-1.  Annual Tmax and Tmin departure from the 1981-2010 average climatology at Las Vegas 
McCarran Airport. The dashed trend lines are over the entire station record and the solid over the 1981-
2010 time period. Only trends that are statistically significant using a Kendall-Mann test are shown.  All 
anomalies are relative to the annual mean value between 1981 and 2010. Notice the greater rate of 
change in Tmin than Tmax. 
 

 
Figure E-2. For each month (January to December) from 1981-2010, the median monthly Tmax (oF) is 
represented by the red circles; whereas the line illustrates the range of temperatures in the 10th to 90th 
percentiles. The diamonds represent the maximum and minimum monthly Tmax values between 1981 and 
2010. The shoulder seasons, Spring (March, April, May) and Fall (October, November) have a large range 
in values. 
 
The small amount of precipitation that falls in southern Nevada arrives primarily during the 
winter or late summer. Low-pressure systems sitting over the region brings storms carrying 
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moisture from the Pacific to Clark County in the winter. Clark County is situated at the north-
western extent of the North American Monsoon (Monsoon), which transports moisture from 
the Gulf of California in late summer to the region. Average precipitation at McCarran airport is 
4.2 inches/year with 43% of the rainfall occurring in the winter months, and 22% during the 
Monsoon season from July through September. Clark County experiences large year-to-year 
variability in precipitation; years with increased frequency and intensity of the largest storms 
(5% of wettest days) typically result in wet years (Figure E-3). Historical observations indicate 
there are no trends in changing precipitation. Nor is there an indication in the last 30-50 years 
that the frequency or intensity of the most extreme precipitation events (99th percentile 
events) has increased.  
 
Only a weak relationship is observed between El Niño-Southern Oscillation (ENSO) phase and 
climate in southern Nevada.  La Niña events tend towards slightly warmer and drier conditions 
in Clark County, while there is a tendency towards cooler and wetter conditions during El Niño 
events. El Niño-Southern Oscillation (ENSO) explains 18% of the variability in winter 
precipitation and provides bounds on what to expect for winter (December-April) precipitation 
and temperatures for the region.  
 
The final section of the historical analysis revealed that wet winter months and cold winter 
months often have signature atmospheric patterns, with low-pressure systems present over the 
region. In contrast, heatwaves are typically associated with high-pressure systems over the 
southwestern U.S. 
 

 
Figure E-3. Total annual rainfall (inches) at Las Vegas McCarran Airport. The dashed line is the average 
annual rainfall for the period-of-record (1948-2016). The height of the bar represents the total annual 
precipitation and the red portion is the contribution from events at or exceeding the 95th percentile. 
 

Selection of Representative Global Climate Models 
 
The global climate model (GCM) selection process was based on the work of Cayan and Tyree 
(2015) which compared the historical GCM runs against observations. From an original list of 
over 30 GCMs, models were eliminated based on global, regional and local evaluations, in that 
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order. The global and regional evaluations were determined by previous studies. Southern 
Nevada specific parameters were selected to reflect characteristics of local climate, including 
seasonal temperature variability, the number of wet days during winter and summer, and the 
atmospheric circulation patterns associated with cold months, wet months and heat waves. 
This process resulted in the selection of six GCMs considered to be representative of local 
climate conditions in Clark County, Nevada (Figure E-4). None of the models were ranked as 
“best” for all evaluation components, nor were any of the selected models in the bottom tier 
for any evaluation component. 
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Figure E-4. Flowchart representing the global climate model (GCM) selection process. Note that the first 
two steps are described in more detail in Cayan and Tyree, 2015. The figure is modified from Cayan and 
Tyree, 2015. 
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Evaluation and Summary of Future Projections 
 
A similar rate of warming is expected in the near term (prior to 2050) regardless of greenhouse 
gas (GHG) concentrations. Globally and locally, warming is a function of increasing 
concentrations of greenhouse gases in the atmosphere (IPCC 2013). To represent a range of 
possible Clark County future climate conditions, two different GHG emission concentrations 
were used. These include, Representative Concentration Pathway 4.5 (RCP 4.5), which 
represents a significant reduction in GHG emissions in the future, and RCP 8.5, which 
represents a business as usual scenario. It is only after the middle of the century that the 
benefits of mitigating GHG emissions today, would be gained. Strong mitigation now could 
reduce the amount of warming by the end of the century by approximately 3.6 ˚F.  
 
Differences in warming prior to 2050 reflect model simulation differences. Based on the suite of 
six GCMs, warming could range between 3-5˚F by 2030-2050 and 5-10˚F by 2100 in southern 
Nevada (Figure E-5). The largest seasonal temperature changes in the future occur in the fall, 
closely followed by the summer and particularly for nighttime temperatures.  
 
By mid-century, Clark County will likely experience approximately 40 – 50 more days above 
100˚F compared to today (Figure E-6). Temperatures rapidly rise through the end of the century 
under RCP8.5, where extreme heat days (>115-120oF) are projected to increase to over 50 days 
per year. 
 
 

Figure E-5. Historical and future projections for Clark County summer Tmax (left) and Tmin (right), spatially 
averaged for Clark County and from the six selected GCMs. The shaded area represents the window, or 
range, of the six models, and the bold line is the ensemble mean, or average, of the six models. The black 
shows the historical model runs and the green dashed line shows the historical data.  
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Figure E-6. Range of the six GCMs RCP8.5 projected average number of days in Clark County at or above 
the indicated temperature threshold (˚F) in each decade from the 1950’s to the 2090’s. The dashed line 
illustrates the division between the historical model scenarios and future climate scenarios.  
 

Projected changes in precipitation are small and highly uncertain, in part due to the large 
natural interannual and decadal variability of precipitation in the region, but also because 
rainfall is difficult to model given GCM resolution. Projections indicate increasing 
precipitation variability and more frequent extreme precipitation events in the future. 
Seasonally, spring may be drier by the end of the century, although the number of wet days will 
increase which means fewer large springtime precipitation events.  
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1. Introduction 
 
Earth’s climate is changing at a pace and in a pattern not explainable by natural influences. 
Global annual average temperature has increased by more than 1.2°F (0.7°C) for the period 
1986–2016 relative to 1901–1960 (USGCRP, 2018, in review). Climate scientists, using global 
climate models (GCMs), project substantial warming through the 21st century in the desert 
southwest, though the magnitude of the warming varies by location (IPCC, 2013; USGCRP, 
2014).  
 
In 2016, Nevada's largest wholesale drinking water provider, the Southern Nevada Water 
Authority (SNWA), contracted the California Nevada Applications Program (CNAP) scientists, 
part of the National Oceanic and Atmospheric Administration Regional Integrated Sciences and 
Assessments (NOAA RISAs) program, to obtain future climate information specific to Clark 
County, NV. The study objective was to select a suite of GCMs that closely simulate historic 
conditions specific to Clark County, from over 30 GCMs, and summarize the range in climate 
variability and projected warming through the year 2100.  
 
The CNAP research team is based at Scripps Institution of Oceanography and the University of 
California, San Diego. CNAP is one of 11 NOAA RISA teams that provide decision-makers and 
policy planners data and guidance on complex climate information to meet their planning 
needs.  
 
This report is organized by the tasks conducted to accomplish the study:   

 
• Chapter 2: Examines historical climatology of Clark County, including spatial and 

temporal variability, from weather stations throughout Clark County with greater than 
30 years of data; 

• Chapter 3: Following the methodology of Cayan et al., 2015, determines the climate 
models that best represent Clark County climate by comparing the climate models 
historical simulations to the actual historical data; 

• Chapter 4: Evaluates and summarizes the range of simulated future climate conditions 
from the selected GCM datasets; and 

• Chapter 5: Summarizes conclusions from the analyses and provides recommended next 
steps. 

 
Each chapter represents a task from the study, plus a final chapter summarizing conclusions 
and next steps. 
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2. Historical Climate Variability  

2.1 Introduction 
 
Spatial variability in temperature and precipitation is strongly guided by topography in Clark 
County. Both the coolest and wettest parts of the county are in the Spring Mountains, followed 
by the Sheep Mountains (Figure 2-1 and Figure 2-2). Besides these two regions, the remainder 
of the county receives between 4-8 inches of rain annually, which makes the county one of the 
driest in the U.S.  
 
Precipitation in the region has two main seasons. The primary precipitation season occurs 
during winter months, December, January and February, but there is a second peak in the 
summer months of July and August. Winter precipitation is generally associated with synoptic 
scale low pressure systems, which take various forms but include the inland penetration of 
atmospheric rivers (Rutz et al., 2014) and cutoff lows. Atmospheric rivers that affect the 
western U.S. are relatively narrow bands of highly concentrated water vapor originating over 
the North Pacific and usually occurring within and influenced by the dynamics of a winter storm 
system. Cutoff lows, which also affect southern Nevada weather, are cyclonic circulation 
features and can produce substantial precipitation, partly because they are slow moving and 
can remain over a region for more than one day. Regional summer precipitation is from the 
North American Monsoon (Monsoon) (Adams and Comrie, 1997). The Monsoon is a thermally 
driven circulation pattern involving summer warming of the North American land mass that 
transports, intermittently, a warm moist flow and convective rainfall into parts of Mexico and 
the Southwest U.S. Southern Nevada is at the northern extent of the Monsoon. The remainder 
of this section will use daily station weather data to examine the temporal and spatial 
variability that underpin the climatological maps.  

  
Figure 2-1. July Tmax and December Tmin averaged between 1981 and 2010 (oF) are shown for Clark County 
and the surrounding area using data from Livneh et al. 2015. The Livneh et al. 2015 dataset is used 
instead of PRISM because the method focused on capturing orographic precipitation, and because it 
extends into Mexico improving the representativeness of the Monsoon. The black circles represent the six 
stations that were the focus of the historical climate analysis in this study, and the white asterisks 
represent the remaining stations that are included in the appendix. 
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Figure 2-2. 1981-2010 average winter (December, January, February, March) and summer (June, July, 
August) seasonal precipitation totals (inches) shown for Clark County and surrounding area using data 
from Livneh et al. 2015. 

2.2 Methodology 
 
Eleven National Weather Service (NWS) Cooperative Observer Program (COOP) Network 
stations throughout Clark County and the surrounding region were initially reviewed for length 
of record, continuity of data, and spatial coverage (Table 2-1). COOP stations are daily weather 
observations of Tmax, Tmin, and precipitation. From these eleven stations, six stations were 
selected as “primary” stations because they had data that began in or prior to 1981, were still 
active at the time of this study, and are dispersed throughout Clark County such that they are 
representative of the different micro-climates within the study area. Information for the five 
stations that were not used in the analysis can be found in the appendix. 
 
Valley of Fire State Park is located at the lowest elevation, 2000 ft, while Mt. Charleston is 
located at the highest elevation, 7460 ft (Figure 2-3). McCarran Airport (McCarran) has the 
most continuous data record with no missing data and a record beginning in 1948. Due to the 
continuity and length of record, this station is often used as a proxy for the region. Throughout 
the report, McCarran is used for comparison to other records or for highlighting a specific 
variable. One of the objectives of this section was to examine the spatial variability of the 
region and thus, McCarran data was used as a baseline to which other stations were compared. 
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Figure 2-3. An elevation map with the six stations used in the report, and include Las Vegas McCarran 
Airport (McCarran), Mount Charleston (Mnt. C), Red Rock Spring Mountain (RRS), Desert National 
Wildlife Range (DNWLR), Valley of Fire (V. of Fire), and Searchlight. Clark County is outlined in black.  
 
Statistically significant trends in Tmin, Tmax, or total precipitation were tested using the Mann-
Kendall test. The Mann-Kendall test is frequently used to detect trends in climate variables that 
vary seasonally and tend not to be normally distributed. Ultimately the test statistically assesses 
if there is a monotonic upward or downward trend in the variable of interest over time. For all 
significance tests, a 95% confidence level was used. Figures of monthly averages use the 30-
year climatological normal period of 1981-2010, unless noted, whereas time series figures use 
the entire period-of-record. Years with more than 10% of missing data were removed from the 
time series analysis and months with more than 15 missing days were removed from the 
monthly analyses (Table 2-1). 
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Table 2-1. Stations names, ID, location, elevation, period-of-record, number of valid observations and the percentage of missing values during 
the time of record. The stations in bold are the six that are analyzed in greater detail. *Indicates USHCN2 station, otherwise GHCN3 station. 
 

Station Name Station ID Latitude 
Longitude 

Elevation 
(feet) 

Valid Date Range 
(MM-YYYY) 

Data Points from Entire Record through 2015 
 

Number of Observations Percent of Missing Data 
Tmax Tmin Precipitation Tmax Tmin Precipitation 

LAUGHLIN 
USC00264480 

35.17 ˚N 
 -114.58˚E 

605 ft 
(184.4 m) 

10/1983 –
Present 10106 9643 10200 4.41 8.79 3.52 

NEEDLES* 
USW00023179 

34.77˚N  
-114.62˚E 

890 ft 
(271.3 m) 

03/1940 – 
Present 27428 27428 27511 1.12 1.12 0.83 

OVERTON 
USC00265846 

36.55˚N 
-114.46˚E 

1250 ft 
(381 m) 

01/1992 – 
Present 8649 8555 7755 1.27 2.34 11.47 

VALLEY OF FIRE SP 
USC00268588 

36.43˚N 
-114.5˚E 

2000 ft 
(609.6 m) 

11/1972 – 
Present 15004 14856 15655 6.76 7.68 2.71 

LAS VEGAS 
MCCARRAN AP USW00023169 

36.07˚N 
 -115.16˚E 

2180 ft 
(664.5 m) 

12/1948 – 
Present 24937 24937 24937 0 0 0 

BOULDER CITY* 
USC00261071 

35.98˚N 
 -114.85˚E 

2500 ft 
(762.0 m) 

08/1931 –
04/2006 24103 24303 24398 3.37 2.57 2.18 

DESERT NATL WL 
RANGE USC00262243 

36.44˚N 
 -115.36˚E 

2914 ft 
(888.2 m) 

04/1940 –
Present 26454 26323 27209 5.57 6.04 2.88 

KINGMAN* 
024645 or 024639 

35.20˚N 
 -114.02˚E 

3539 ft 
(1078.7 m) 

09/1967 – 
12/1989 8143 8143 8143 0 0 0 

SEARCHLIGHT* 
USC00267369 

35.47˚N 
 -114.92˚E 

3540 ft 
(1079.0 m) 

12/1913 – 
Present 35201 36113 36315 6.43 4.00 3.47 

RED ROCK SPG MT 
RCF USC00266691 

36.07˚N 
 -115.46˚E 

3780 ft 
(1152.1 m) 

05/1977 – 
Present 13304 13130 13775 8.12 9.32 4.87 

MT. CHARLESTON 
USC00265400 

36.26˚N 
 -115.64˚E 

7460 ft 
(2273.8 m) 

01/1980 – 
Present 13137 13074 13164 1.85 2.32 1.65 

                                                        
2 The U.S. Historical Climatology Network (USHCN) data are used to quantify national- and regional-scale temperature changes in the contiguous United States 
(CONUS). The USHCN is a designated subset of the NOAA Cooperative Observer Program (COOP) Network with sites selected according to their spatial 
coverage, record length, data completeness, and historical stability.  
3 The Global Historical Climatology Network (GHCN) is an integrated database of climate summaries from land surface stations across the globe that have been 
subjected to a common suite of quality assurance reviews. 
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Figure 2-4. Colored lines show average monthly Tmax (red) and Tmin (blue) (oF) while monthly precipitation 
totals (inches) are shown as grey bars. The stations in the top two rows are calculated for a record from 
1981-2010 while the remaining figures use various time periods given the period of observations (Table 
2-1). All stations show a peak in precipitation in January and February associated with winter storms and 
a second peak in July and August associated with the summer monsoon. Warmest temperatures are in 
July followed by August. 
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2.3 Results  

2.3.1 Temperature 
December and January are the coolest months for Tmax and Tmin, while July followed by August 
have the highest temperatures (Figure 2-4). For Tmax, the only location that has a significant 
trend for the period between 1981-2010 is Valley of Fire State Park (0.59˚F per decade); 
McCarran Airport and Dessert National Wildlife Range have significant trends over their 
respective period-of-record, though the trends are weaker (~0.20˚F per decade) than Valley of 
Fire. Upward temperature trends are much stronger for Tmin than for Tmax, which has also been 
documented in California and globally (Figure 2-5 and Figure 2-6) (Gordero et al. 2011; Karl et 
al., 1993; Easterling et al., 1997). All stations show a significant warming trend in Tmin for both 
the period-of-record and from 1981-2010 except for Red Rock Springs, which is likely the result 
of missing years due to missing data.  
 
The Tmin trend for McCarran is the highest, 2.0˚F per decade, which is more than double any 
other station. The much larger trend in Tmin for McCarran is likely caused by a growing urban 
heat island effect. Several large cities have documented increased warming as a result of the 
urban heat island effect, which has been shown to have a greater impact on nighttime 
temperatures (Karl et al., 1993). The urban heat island effect is caused by the urbanized 
environment absorbing more solar radiation during the day and releasing the heat more slowly 
at night than the natural open land and vegetation it replaced (Rizwan et al., 2008). Nighttime 
temperatures are less able to cool down, resulting in a greater increase in Tmin as compared to 
Tmax. The difference in trends between Tmax and Tmin are also reflected in the 30-year moving 
averages of Tmax and Tmin (Table 2-2 and Table 2-3), with the largest change in the 30-year 
average for Tmax of 0.4˚F at McCarran and the largest change in the 30-year average for Tmin of 
4.0˚F at McCarran. Seasonally, summer, (June-September), and fall (October-November) have 
the stronger trends in Tmax and Tmin relative to winter (December-March) and spring (April-May) 
(not shown).  
 
Outside of Las Vegas in the more rural areas of Clark County, the urban heat island effect is less 
likely to influence Tmin, suggesting other mechanisms may explain the difference between the 
Tmin and Tmax in these regions. Irrigation has also been shown to decrease Tmax while not 
affecting Tmin as significantly (Lobell and Bonfils, 2008). Whether irrigation is having a similar 
impact in Clark County as has been shown elsewhere in the West might be explored in follow-
up studies. Aerosol particles, including their impacts on cloud development, are suggested to 
be a cooling counterpart to rising daily global temperatures (IPCC 2007; 2013). More 
specifically, aerosol particles and their interaction with solar energy may cool days and warm 
nights, thus acting to buffer Tmax while amplifying nighttime Tmin. Aerosols can also impact 
regional cloud cover; however, these impacts are specific to local atmospheric conditions 
(Albrecht, 1989; Twomey, 1977), and cloud cover is relatively low in southern Nevada so this 
effect may be minimal. 
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Figure 2-5. The annual Tmax departure from the 1981-2010 average climatology. The dashed trend lines 
are for the entire station record and the solid between 1981 and 2010. Only trends that are statistically 
significant using a Kendall-Mann test are shown. All anomalies are relative to the annual mean value 
from 1981-2010. Note the different y-axis by station.  
 
Table 2-2. The 30-year average of annual average Tmax (˚F) 

Annual Average Tmax (˚F) 
 1951-1980 1961-1990 1971-2000 1981-2010 
VALLEY OF FIRE SP N/A N/A N/A 81.0 
MCCARRAN AP 79.7 79.7 79.9 80.1 
DESERT NATL WL 
RANGE 78.9 78.9 78.8 78.8 

SEARCHLIGHT 75.3 75.3 76.7 75.3 
RED ROCK SPG  N/A N/A N/A 74.3 
MT. CHARLESTON  N/A N/A N/A 60.6 
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Figure 2-6. Same a Figure 2-5 but for Tmin. Notice that there are more significant trend lines and the rate 
of change is greater than for Tmax at most stations. 
 
Table 2-3. The 30-year average of annual average Tmin (˚F). 

Annual Average Tmin (˚F) 
 1951-1980 1961-1990 1971-2000 1981-2010 
VALLEY OF FIRE SP N/A N/A N/A 58.8 
MCCARRAN AP 52.9 53.8 55.1 57.0 
DESERT NATL WL 
RANGE 47.1 46.4 46.6 47.4 

SEARCHLIGHT 51.4 52.5 51.7 53.2 
RED ROCK SPG  N/A N/A N/A 48.0 
MT. CHARLESTON  N/A N/A N/A 31.8 

 
 
Beyond understanding general temperature trends, there is value in understanding the 
frequency at which certain thresholds are reached and if these are changing. For instance, 
extreme high temperatures can decrease power transmission efficiency and production, 
decrease the lifespan of an asset, increase water needs for outdoor irrigation, or jeopardize the 
health of SNWA’s outdoor workforce. In contrast, temperatures below freezing can cause pipe 
failures. To determine if there is a trend in extreme heat the number of days per year from 
May-Sept above 100ºF, 105ºF, 110ºF, and 115ºF are plotted for each station in Figure 2-7. 
There are no significant trends in the station data using data from May-Sept. In a separate 
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analysis that only evaluates days in July at McCarran, revealed a statistically significant decline 
in the number of days above 100⁰F at McCarran, and a non-statistically significant increase in 
the number of 105ºF days (see appendix).  
 
Examining the low temperature thresholds, downward trends in the number of days below a 
threshold are visible for all stations except Red Rock Springs (Figure 2-8) which shows the 
number of days from Nov-Mar that are below 32ºF, 40ºF, and 50ºF. The number of days below 
32ºF is particularly important in the high elevation Mt Charleston region because of the 
potential to impact whether precipitation falls as snow or rain and how late into the season the 
snow pack remains. Changes in snow pack may impact groundwater recharge given that snow 
contributes disproportionally more to groundwater recharge than to surface run-off in the 
Spring Mountains (Earman et al., 2006). The freezing elevation between Nov-March in the 
Spring Mountains has a statistically significant increasing trend over the time period of 1949-
2016 (WRCC, North American Freezing Level Tracker, www.wrcc.dri.edu/cwd/products/), 
suggesting that snow pack in the region may already be affected by warming. 
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Figure 2-7. The bars illustrate the number of days above a temperature threshold in May, June, July, 
August and September of a given year. Purple is the number of days above 100˚F, the red is the 
additional number of days above 105˚F, the yellow is the additional number of days above 110˚F and the 
green is the additional number of days above 115˚F. Mt Charleston does not have any days above 100 ˚F 
and is not shown. Similar figures for each station and each month, May-September, are in the appendix.  
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Figure 2-8. The bars illustrate the number of days below a temperature threshold in November, December, 
January, February and March of a given year. Purple represents the number of days below 32˚F, the green 
represents the additional number of days below 40˚F, and yellow is the additional number of days below 50˚F. 
Similar figures for each station and each month, November-March, are in the appendix. 
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In addition to looking at temperature values, temperature variability was also examined to 
understand how variable temperature in a given month has been over the historical record. 
Temperature variability places bounds on the expected temperature range. For example, 
although July and August are warmer than June, most stations have a larger historical range in 
June (Figure 2-9, Figure 2-10) indicating that June temperature is less predictable using 
climatology. The possible temperature range is the largest, for the spring and fall months. For 
example, the difference between the maximum and minimum April Tmax differs by over 20˚F in 
some cases (Figure 2-9). Tmin values show similar behavior in the shoulder seasons, spring and 
fall, as having the largest temperature range (Figure 2-10). Examining the range of average 
winter months’ temperature provides information as to what months at a given station are 
likely to have temperatures regularly below freezing. The variability of maximum daily 
temperature in any given month was examined further (and is shown for McCarran Airport, and 
in the appendix for other stations) (Figure 2-11). The monthly variance plots also indicate that 
May and October are the most variable months at McCarran and that there was no statistically 
significant trend in the change of monthly variability for any of the months at McCarran.  
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Figure 2-9. For each month (January to December) from 1981-2010, the mean monthly Tmax (oF) is 
represented by the red circles whereas the line illustrates the range of temperatures in the 10th to 90th 
percentiles. The diamonds represent the maximum and minimum Tmax values over the 1981-2010 time 
period. The shoulder seasons, Spring (MAM) and Fall (SON) have a large range of values.  
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Figure 2-10. Same as previous figure but for Tmin. Patterns are similar to Tmax.  
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Figure 2-11. Each circle indicates how variable the days of that month were in a given year. The time 
series allows for an examination of how variability in a given month may have changed over time. This 
figure is for Tmax at McCarran Airport, but the variance for all stations and for Tmin is in the appendix.  
 
The previous sections examined the temporal variability of temperature at the various stations, 
however, understanding the spatial coherency of the region is needed given the use of 
McCarran for weather and climate information. As mentioned in the Methodology section 
(Section 2.2), SNWA’s primary source of weather and climate information is from the National 
Weather Service’s McCarran Airport station due to the long history of a quality record. Given its 
placement in the urban center of Las Vegas, it is likely the McCarran record incorporates the 
imprint of the urban heat island effect. Seasonal correlations of Tmax and Tmin anomalies address 
this question of regional spatial variability. Tmax has higher correlations at all stations as 
compared to Tmin, with most correlations being above 0.7 for Tmax and above 0.6 for Tmin (Figure 
2-12 and Figure 2-13). Further study is needed to determine what factors are driving the 
correlations, such as land surface, elevation, cloud cover, aerosol and air mass homogeneity, 
which are linked to winter storm systems, the monsoon, and desert conditions, or combination 
of these factors.  
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Figure 2-12. The correlations for the entire year and by season between McCarran Airport and the listed 
station for the time period 1981-2010 for Tmax. 
 

 
Figure 2-13. The correlations for the entire year and by season between McCarran Airport and the listed 
station for the time period 1981-2010 for Tmin. 
 



 28 

2.3.2 Precipitation 
Precipitation throughout Clark County is highly variable year-to-year, with annual variability a 
third to half the annual average (Figure 2-14). The two most variable stations are Desert 
National Wildlife Range (DNWR) and McCarran Airport (McCarran). The trends at these stations 
are less than 0.01 inch per decade (not shown), suggesting that year-to-year variability is the 
dominant factor, not a decreasing or increasing trend. Previous research has shown that rare 
precipitation events, defined as the 95th percentile event explain 79% of the year-to-year 
variability in southern Nevada (Dettinger, Nevada Water Resources Association Meeting, 2015). 
Thus, these large, relatively infrequent precipitation events contribute an important fraction of 
the total precipitation. Over the 1981-2010 period, the 95th percentile storms (red portion of 
the bar graph in Figure 2-14) contribute between 25-35% of the annual precipitation at the six 
stations.  Annual precipitation totals are available from before 1951 through 2010 for stations 
McCarran, DNWR, and Searchlight (Table 2-4). Where this data exists, small increases in the 30 
year average annual precipitation has occurred through time. More long term monitoring is 
needed to confirm if this is a statistically significant trend for the region. 
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Figure 2-14. The total annual rainfall (inches) at each station. The dashed line is the average annual 
rainfall over the entire period-of-record. The height of the entire bar represents the total annual 
precipitation and the red portion is the contribution from events at or exceeding the 95th percentile. The 
95th percentile threshold at each station is written in each panel. Note the scale change on the y-axis. 
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Table 2-4. The 30-year average of annual accumulated precipitation (in). 

Annual Accumulated Precipitation (in) 
 1951-1980 1961-1990 1971-2000 1981-2010 
VALLEY OF FIRE SP N/A N/A N/A 5.99 
MCCARRAN AP 4.19 4.14 4.49 4.20 
DESERT NATL WL 
RANGE 4.24 4.01 4.38 4.73 

SEARCHLIGHT 6.17 7.22 7.50 8.94 
RED ROCK SPG  N/A N/A N/A 9.79 
MT. CHARLESTON  N/A N/A N/A 23.45 

 
Climate and weather extremes, particularly precipitation, are garnering attention recently, 
given recent tropical storms, Harvey, Maria and Irma in 2017. Some studies indicate that 
extreme precipitation intensities have already increased across the contiguous U.S. (Kunkel et. 
al. 2013), and a 2016 study suggests that both frequency and intensities will continue to 
increase with warming (Prein et al., 2017). These high intensity, but rare precipitation events 
are those most likely to lead to flooding - and costly damage. In the case of societal costs 
related to climate and weather- it is those rare extreme events that cause the majority of those 
costs (Peterson et al. 2008). Understanding if the occurrence of extreme events locally has 
changed historically, and whether we should expect their occurrence to change in the future is 
an essential step for planning. For the purpose of this report, identification of an extreme event 
is based only on precipitation amounts, not on the total monetary loss from events, which is 
influenced by the density and structural integrity of the built environment where the extreme 
event occurs. 
 
Warmer temperatures cause more water vapor to be evaporated and held in the atmosphere. 
Globally, there has been an increase in water vapor of 3-5% since 1970s (IPCC 2013). At the 
local scale, it is unclear if that increased water vapor is translated into more frequent heavy or 
extreme precipitation events. Here the definition of “extreme event” includes all events with 
magnitudes greater than or equal to the 99th percentile of wet days at a given station over the 
30-year period. By definition, these events are rare with 8-10 events during 1981-2010, with 
the exception of Mt. Charleston, which had 16 events. Mt. Charleston also has the highest 
threshold for a 99th percentile event, 3.24 inches of precipitation falling in a 24-hour period.  
McCarran has the smallest threshold, 0.96 inches.  
 
In Figure 2-15, the number of 99th percentile precipitation events, or extreme precipitation 
events, is plotted against the backdrop of percent contribution of each month to total annual 
accumulation. Of all months, the occurrence of extreme precipitation events was greatest in 
December followed by February (Figure 2-15). These events, and other winter extremes are 
possibly related to inland penetrating atmospheric rivers, as 35-55% of the top 10% of 24-hour 
precipitation events during the winter months are associated with atmospheric rivers in this 
region (Rutz et al. 2014). Currently there is a research effort to improve the forecasts of these 
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extreme events and the inland penetration of the events to help emergency managers. The July 
and August events in summer are related to the Monsoon. It is also important to note the 
absence of these events. There are no 99th percentile events from 1981-2010 in April, May or 
June. Further analysis indicated the 99th percentile events are not becoming more frequent in 
the most recent decade relative to historic decades.  
 

 
Figure 2-15. The blue bars depict the average monthly percent contribution of all precipitation to the 
total annual rainfall. Thus all 12 bars total 100%. As noted previously, at all six stations, February has the 
largest contribution to total annual precipitation. The red line is the number of extreme precipitation 
events, or 99th percentile events over 1981-2010.  
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Similar to temperature, understanding the spatial variability of precipitation is important. 
Figure 2-16 compares the number of days it rained at a specific station to when it rained at 
McCarran. This is represented as a fraction of the total raining days at McCarran. Approximately 
50-67% of the days it rained at McCarran Airport it also rained at the other stations. During 
winter and spring the shared fraction of days are higher suggesting that winter and spring 
precipitation events are a result of larger regional storm systems. Summer months have the 
lowest fractions, presumably reflecting the more spatially spotty nature of the convective 
precipitation during the warm season. Mt. Charleston has the highest shared fractions for all 
seasons, which is likely a result of the fact that of all the stations it has the greatest number of 
days with precipitation resulting in increased common fractions with McCarran.   
 
 

 
Figure 2-16. The fraction (or percentage) of time that if it is raining at McCarran it is also raining at the 
listed station using data from 1981-2010. The lowest percentage is during the summer, monsoon season, 
when the precipitation events are not spatially coherent. 
 

2.3.3 Climate Oscillations 
The El Niño - Southern Oscillation (ENSO) is a climate oscillation, or periodic fluctuation, 
that occurs in the Equatorial Pacific approximately every 2-7 years. ENSO is an interaction 
between the tropical atmosphere and ocean in which the winds affect Pacific Ocean 
temperatures which in return affects the strength of the winds creating a positive feedback. 
During El Niño events, the winds across the tropical Pacific are weaker and sea surface 
temperatures (SSTs) in the eastern tropical Pacific are warmer. In contrast, during a La Niña 
event, the winds are stronger and the SSTs along the west coast of the U.S. are cooler. The 
presence of an El Niño, or La Niña, can modify the atmosphere such that it affects typical 
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weather patterns throughout the world. Because an ENSO phase in the tropical pacific can 
be predicted 3 or more months in advance of onset (Jin et al., 2008) the relationship 
between ENSO phase (El Niño, La Niña or neutral) and precipitation and temperature are 
often used for seasonal forecasts across the U.S.  
 
Using the Oceanic Nino Index (ONI), which is a three-month running mean of SST anomalies 
in the Niño 3.4 region (5oN-5oS, 120o-170oW), the precipitation-ENSO relationships for Clark 
County using data from Searchlight, McCarran Airport and Desert National Wildlife Range 
from 1950-2015 were examined. ONI anomalies with values greater than 0.5 define El Niño 
conditions and values less than - 0.5 signify La Niña conditions. Here, ONI values are 
averaged over January, February and March (JFM) because this provided the strongest 
correlation. For December – April precipitation, JFM ONI values explain about 18% of the 
variability (r2 =0.18) (Figure 2-17, top). All December-April periods with more than 5 inches 
of precipitation occurred when the ONI index was 0.3 or above, suggesting that an El Niño is 
not necessary to have a wet winter; however, historically there is no precedent for a wet 
winter if the ONI value is below 0.3 (i.e. neutral or La Niña conditions).  
 
The wettest winters did occur when the ONI values were between 0.3 and 0.6 indicating 
that a strong El Niño does not necessarily mean a very wet atmospheric response over 
southern Nevada. Further, in all cases when the ONI is above 1, the region received 2 inches 
of rain or more suggesting that very dry winters are not likely to occur during moderately 
strong El Niño events. There is a weak relationship with Tmax, but similar to precipitation in 
that the ENSO strength provides some bounds on the expected seasonal conditions (Figure 
2-17, bottom). For example, the coldest winters do not occur during La Niña events over 1.0 
and the warmest winters do not occur during El Niño events over 1.0. There is no 
relationship with Tmin.  
 
In addition to ENSO, it was previously shown that the Pacific Decadal Oscillation, a pattern 
of Pacific climate variability similar to ENSO in character but oscillates on a much longer 
time scale, 10-30 years, can affect the amount of precipitation in southern Nevada 
(Dettinger, Nevada Water Resource Association Meeting, 2015).  
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Figure 2-17. (Top) December -April precipitation (averaged from Searchlight, McCarran Airport, and 
Desert National Wildlife Range) plotted against the January-March ONI values, or sea surface 
temperature anomalies in the tropical Pacific. More negative ONI values correspond to cooler ocean 
temperatures that define La Niña events. (Bottom) Same as top, but for Tmax. 
  

2.3.4. Atmospheric Patterns for Wet Months, Cold Months and Heat Waves 
To understand what atmospheric patterns are driving monthly variability in the Clark County 
region, the wettest months over the period 1981-2010 were identified for both the warm and 
cool seasons, and the coldest months and the most significant heat waves were identified for 
the same period. For each month that produced these end member climate conditions, the 
atmospheric setup over the equatorial Pacific and western U.S. were evaluated. The objective 
was to determine if there was a common atmospheric synoptic scale set up, that led to each of 
these anomalous inland conditions. The results from this analysis will be used in the model 
selection process in Chapter 3. 
 
The four analyses of atmospheric patterns leading to outlier climate conditions in Clark County 
over the period 1981-2010 are displayed in Figure 2-18 through Figure 2-21. Figure 2-18 
displays the 10 winter months with the coldest average Tmin value at McCarran. Every 1981-
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2010 cool season month (DJF) was evaluated to see which month and year produced the most 
number of wet days (Figure 2-19). The number of wet days was used rather than the total 
precipitation because the number of wet days in a given period generally has a greater impact 
on water demand.  
 
In contrast, Figure 2-20, displays the 11 months of the 1981-2010 summer season months (JAS) 
with the most number of wet days in Clark County. Figure 2-20 indicates the 10 hottest heat 
waves that occurred in the region from 1981-2010. Heat waves were examined rather than the 
hottest 10 months, because when the hottest 10 summer months were determined, they all 
occurred in July and likely were a reflection of the long, hot days during this month rather than 
an anomalous feature. Heat waves were determined using the same method as Gershunov et 
al. (2009), which counts the degrees above the 95th percentile for a given day at a given station. 
The total degrees above this threshold for each station were then summed to determine the 
severity of the heat waves regionally. All of the “top 10 analyses” were done from 1981-2010. 
All synoptic patterns are showing the 500 millibar height anomalies using NCEP/NCAR 
reanalysis (Kalnay et al. 1996), with warm colors indicative of a high pressure and cool colors 
indicative of low pressures. 
 
In examining the cases in more detail, there are some atmospheric patterns that emerge for the 
coldest months, wettest winter months and heat waves, however no patterns are apparent for 
the wettest summer months. Even in cases where there are common patterns in the “top 10”, 
there is still much variability between each month as would be expected. In 8 of the coldest 
months, there is a high-pressure system off the coast of North America with an adjacent low-
pressure system bringing cold air from the north which causes these cold months, although the 
intensity and exact location of the low-pressure system varies (Figure 2-18). For most of the 10 
wettest winter (DFJ) months in the region, a low-pressure system is located off the coast of 
North America which leads to an atmospheric circulation that brings in moisture from the 
Pacific (Figure 2-19). Of these 10 months, 7 of them are also the 10 wettest months using the 
total precipitation in the region. No clear pattern emerges during the top 11 wettest summer 
months (not shown). Of these 11 months, 6 of them are also on the list of the top 10 wettest 
summer months if total precipitation was used rather than the number of wet days per month.  
 
In a brief comparison, we examined the cloud albedo, an indicator for cloudiness, during the 6 
wet months from 1996 onward (not shown). Of the 6 months, 5 months had an anomalously 
high cloud coverage over the southern half of Nevada while much of the Pacific Northwest and 
the coastal ocean had anomalously low cloud cover. Further analysis is needed to better 
understand this relationship between cloudiness, wet summer months and potential 
temperature variability throughout the region. The 10 most extreme heat waves in the region 
show a high-pressure system over much of the southwest with anomalies typically greater than 
50 millibars (Figure 2-20). The locations of the surrounding low-pressure systems are highly 
variable. 
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Figure 2-18. Atmospheric circulation (500 millibar height anomalies) for the 10 coldest months at 
McCarran Airport for the time period between 1981-2010 are illustrated here. The last is the composite, 
or average, of all 10. Generally, the high-pressure system off the coast of North America and low-
pressure to its east results in northerly wind flows which advects cold winter continental air into southern 
Nevada. 
 

Coldest 10 Months 
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Figure 2-19. Atmospheric circulation (500 millibar height anomalies) for the 10 months with the greatest 
number of wet days in December-January-February at McCarran Airport for the time period between 
1981-2010. The last is the composite, or average, of all 10. Generally, when there is low-pressure from 
the North Pacific across the west coast of North America, North Pacific storms are able to penetrate 
inland to the Clark County region. 

Wettest 10 Winter Months 
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Figure 2-20. Atmospheric circulation (500 millibar height anomalies) for the 10 most extreme 3 and 4-day 
heat waves at McCarran Airport for the time period between 1981-2010. The last is the composite, or 
average, of all 10. During these events, there is an extensive high-pressure system over much of the 
Southwest. These conditions usually create clear skies and sinking motions over the region which result in 
high daytime temperatures.  
 

2.4. Summary 
The historical summary supports many observations that have previously been noted, as well as 
bringing to light some new observations particularly with a broader spatial view of the region. 
The increase in Tmin was previously noted by SNWA at McCarran, and although it is the 
strongest at McCarran, the stronger trend in Tmin relative to Tmax is documented throughout the 
region. Unlike temperature, there are no significant trends in precipitation and the large events 
have occurred sporadically throughout the historical record. El Nino-Southern Oscillation 
(ENSO) explains 18% of the precipitation variability and places some bounds on what to expect 
for winter (December-April) precipitation and Tmax for the region. Specifically, the region tends 
to be warmer and drier during La Nina events, and cooler and wetter during El Nino events.  

Heat Waves 
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Lastly, the wet winter months and cold winter months often have signature atmospheric 
patterns, with low-pressure systems present over the region. Similarly, heatwaves typically are 
associated with high-pressure systems over the Clark County region. The observations and 
analyses in this section will be used and referred to in the model selection and future 
projections chapters (Chapter 3 and Chapter 4).  
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3. Global Climate Model Selection 

3.1 Introduction 
Global Climate Models (GCMs) provide simulations of how the Earth’s climate evolves under 
different conditions, such as different atmospheric concentrations of greenhouse gas emissions 
(GHGs), and are currently the best tool for examining potential future climate scenarios. GCMs 
are mathematical representations of the Earth system and simulate the complex interaction 
between the atmosphere, the oceans, the land surface, glaciers, and sea ice. In addition to 
simulating climate conditions through the end of the 21st century, the same models simulate 
climate conditions for the historical period using observations of solar radiation, volcanic 
eruptions, greenhouse gas and aerosol emissions, and land use (Taylor et al., 2012). Historical 
simulations can be compared to observations to determine how well the model represents past 
climate (Gleckler et al., 2008; Pierce et al., 2009; Sillmann et al., 2013). There are over 30 GCMs, 
developed at numerous international research institutions, used to project how climate may 
evolve through time. All of these models are run under an agreed upon set of scenarios to 
facilitate the comparison between the models and present a range of future outcomes. This 
range or difference in model simulations is one type of “uncertainty.” 
 
Individual GCM results differ for numerous reasons, including the resolution of the model (the 
distance between grid cells), the unique parameterizations each model uses, the external 
forcing used, and natural climate variability. Parameterization mathematically simplifies 
processes through the use of equations and applies it over a larger scale. Parameterizations are 
used when physical processes, such as the treatment of ice crystals in clouds, occur at smaller 
scales than the grid resolution and cannot be properly modelled. External forcing, or 
perturbations, refers to different factors that affect the Earth’s climate and “force” or drive the 
climate system to change. External forcing’s include solar variations, volcanic eruptions, 
greenhouse gas emissions, and aerosols. Natural climate variability refers to the range in 
outcomes from internal interactions between components of the climate system, and is built 
into the models (Deser et al., 2012). Despite these components of modeling, uncertainty in how 
much climate will change by the end of the century is dominated by what, if anything, people 
do to address rising GHG concentrations in the atmosphere (Hawkins and Sutton, 2009).  
 
There is no perfect model, but modeling the Earth system has improved steadily over the years 
(IPCC, 2013, Knutti et al., 2013). Some models do a better job of representing parts of the 
climate system than others. The objective of the climate model selection process was to derive 
a practical number of GCMs that best capture historical climate variability in southern Nevada. 
The approach was based on previous research that applied a similar methodology to provide 
guidance on the most representative models for California (Cayan and Tyree, 2015). 
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3.2 Methodology 
The most recent Coupled Model Intercomparison Project (CMIP5) provides more than 30 GCM 
simulations forced using multiple greenhouse gas and aerosol emission scenarios allowing for a 
comparison of future climate projections. The 30 historical model runs were evaluated on how 
well they represented observed climate variables. The evaluation process used here was similar 
to that used in Cayan et al., (2015) and began with a global perspective, stepping down to the 
southwest and finally southern Nevada (Figure 3-1, Table 3-1 and Table 3-3).  
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Figure 3-1. A flow chart representing the model selection process. Note that the first two steps and 
results from this analysis are described in more detail in Cayan and Tyree, 2015. The figure is modified 
from Cayan and Tyree, 2015.  
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The initial elimination of lower-performing global climate models was based on the work of 
Gleckler et al. (2008), which evaluated the global climatology of atmospheric variables in 
historical GCM runs to reanalysis data sets. This process eliminated 12 GCMs. The next round of 
model eliminations was based on the methods used in Rupp et al. (2013), which evaluated 
models for the Pacific Northwest against historical data, but was done for the Southwest 
(including Clark County). The models were evaluated on their representation of historical 
Southwestern temperature and precipitation, including the diurnal temperature range, the 
seasonal cycle, annual temperature variability, and the coefficient of variation and correlation 
of winter temperature and precipitation with a measure of the El Nino/La Nina cycle, the 
Nino3.4 index (Figure 3-1, Table 3.1 and Table 3.3). This eliminated an additional 4 GCMs. The 
remaining 15 models were then examined regionally against historical data, specifically 
McCarran station, for southern Nevada, which is the focus of this section. 

 
To impartially compare the 15 GCM historical simulations with different model resolutions, 
each GCM’s data was interpolated to the same 2˚ x 2˚ grid using bilinear interpolation (Adams, 
1994). The various GCMs use different grids and because of this, interpolating or regridding is 
necessary to compare the same spatial domain. The regridding process resulted in four grid 
boxes over southern Nevada (Figure 3-2), each representing climate in four sub-regions near 
southern Nevada. 
 

 
Figure 3-2. Map of location of four GCM interpolated grid boxes (2˚ x 2˚) used in this report over southern 
Nevada for GCM evaluation and future climate projections. 
 
Based on historical observations (Chapter 2) several climate variables were used to identify 
which of the 15 GCMs best represent Clark County climate. The variables used for the selection 
were based on the relevance to water management in the region, what variables were not 
already considered in the prior evaluations (Figure 3-1, Table 3-1), and what variables would be 
readily improved through bias correction. A simple example of a bias correction is if the model 
is always 2˚F warmer than historical, then bias correcting the model would mean subtracting 
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2˚F from the final value. Based on these guiding principles, the following variables were 
selected:  

a. Standard deviation in daily Tmax during four seasons: April-May, June-July-
August-September, October-November, and December-January-February-
March. This was calculated separately for each seasonal period and year. 

b. Number of wet days during July-August-September and December-January-
February-March 

c. Atmospheric circulation patterns based on 500 hPa geopotential height 
anomalies for: 

•10 Coldest Months 
•10 Wettest Months (based on number of wet days, and then precipitation 
total) 
•Top 10 3-day Heat Waves 

 
Standard deviation of Tmax was selected because periods of anomalously high maximum 
temperatures represent periods of high water consumption particularly for outdoor irrigation. 
As a result, how well models do in representing the Tmax variability and in different seasons is 
important for considering future conservation efforts.  
 
The second selection criteria were the number of wet days in southern Nevada’s two primary 
precipitation seasons, winter (December-March) and the summer monsoon (July-September). 
In this study, for a day to be considered a precipitation day, the total daily precipitation had to 
exceed 1 mm/day because GCMs have a tendency to over produce small amounts of 
precipitation (Pendergrass and Hartmann, 2014). The number of wet days was used rather than 
total precipitation because a wet day and the associated cloud cover reflect days of lower water 
consumption, particularly in summer months.  
 
Both the standard deviation of Tmax and the number of wet days in the historical runs were 
compared against daily temperature and precipitation observation from McCarran. The 
difference between the models and McCarran for the mean and standard deviation were 
considered for the four grid boxes and for the aforementioned seasons. 
 
Note that the months included in each season for the selection criteria differs between 
temperature and precipitation. This was done based on the results from the historical analysis. 
For Tmax, the shoulder seasons in the model selection process were defined as April-May and 
October-November. This was done because these seasons have the largest range of 
temperatures (Figure 2-9), and typically demonstrate the largest variability in water use year-
to-year. The precipitation seasons, winter (December – March) and summer (July-September), 
were based on the winter and summer months that receive the most amount of precipitation 
(Figure 2-15).  
 
Another selection criterion was based on the models’ ability to represent atmospheric 
circulation patterns that are historically associated with extremes. The climate extremes chosen 
were the coldest winter months, the wettest winter months, and 3-day heatwaves. The 
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underlying assumption is that models that produce climate extremes for the right atmospheric 
reasons are more reliable for the future projections. For each of the 15 models, the 
atmospheric circulation patterns associated with the ten coldest winter months, wettest winter 
months, and heatwaves were compared to the corresponding observed composites in Chapter 
2 (Figure 2-18 through Figure 2-20). The comparison used the dot product (similar to a pattern 
correlation) for a quantitative evaluation. Two of the models, CESM1-BGC and CESM1-CAM5, 
did not have the necessary atmospheric variables to do this analysis and therefore were only 
evaluated on the Tmax standard deviation and number of wet days.  
 
Lastly, the final selection criteria were “model genetics”, or if the model was developed by the 
same institution and had similar internal structure (Knutti et al., 2013). For example, although 
two models from the UK Hadley center, HadGEM2-ES and HadGEM2-CC, ranked highly, only 
one of the HadGEM2 models were selected. Selecting models from different lineages increases 
the likelihood that a wide range of solutions are included in the selection. Further consideration 
was given to what models are being used in other regional studies such as the National Climate 
Assessment Report 4 in order to better leverage the results from these on-going studies. 
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Table 3-1. The metric and description of the variables used to select models at the different spatial scales 
Metric Description 
Global Metrics (Glecker et al. 2008) 
LW CRE, SW CRW Longwave (LW) or Shortwave (SW) Cloud Radiative Effects 

RSUT RLUT Top of the Atmosphere Reflected Shortwaves (S) and Longwave 
(L) Radiation 

PR Total Precipitation 
TAS Surface Air Temperature 
ZG (500 hPA) Geopotential height 

VA & UA (200 hPa) 
VA & UA (850 hPa)  

Meridional (VA, North-South) and Zonal (UA, West-East) wind 
speeds at two different levels in the atmosphere 200 hPA and 850 
hPa 

TA (200 hPA), TA (850 hPA) Temperature at two different levels in the atmosphere, 200 hPA 
and 850 hPa 

Western United States Metrics (Rupp et al., 2013) 
Mean-T and Mean-P Mean Annual Temperature (T0 and Precipitation (P), 1960-1999 
DTR-MMM Mean diurnal temperature range, 1950-1999 

SeasonAmp-T 
SeasonAmp-P 

Mean amplitude of seasonal cycle as the difference between the 
warmest and coldest month (T) or between the wettest and driest 
month (P), 1960-1999. Monthly precipitation calculated as 
percentage of mean annual total 

SpaceCor-MMM*-T 
SpaceCor-MMM*-P 

Correlation of simulated with the observed the mean spatial 
pattern of temperature and precipitation, 1960-1999 

SpaceSD-MMM*-T 
SpaceSD-MMM*-P 

Standard deviation of the mean spatial pattern of temperature 
and precipitation, 1960-1999 

TimeVar.1-T to TimeVar.8-T Variance of temperature calculated at frequencies (time periods 
of aggregation) ranging for N=1 and 8 years, 1901-1999 

TimeCV.1-P to TimeCV.8-P 
Coefficient of variation (CV) of precipitation calculated at 
frequencies (time periods of aggregation) ranging for N=1 & 8 
water years**, 1902-1999 

Trend-T and Trend-P Linear trend in annual temperature and precipitation, 1901-1999 

ENSO-T and ENSO-P Correlation of winter temperature and precipitation with Niño 3.4 
index, 1901-1999 

Hurst-T and Hurst-P Hurst exponent using monthly difference anomalies (t) of 
fractional anomalies (p), 1901-1999. 

Southern Nevada Metrics 

Seasonal-TmaxStdev Tmax standard deviation seasonally (DJFM, AM, JJAS, ON) relative 
to McCarran  

WetDays-Winter, WetDays-
Summer 

Number of wet days in winter (DJFM) and summer (JA) relative to 
McCarran 

Atmospheric circulation 
patterns associated with 
extremes 

Compare the atmosphere circulation patterns (500 mbar height 
anomalies) during wettest winter months, coldest months and 3-
day heat to a composite from reanalysis data 

Miscellaneous 

Model genetics Only one model from the same model family was included in the 
selected models to represent model diversity. 
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3.3 Results 
The paragraphs below discuss the analysis and the results of comparing the historical runs 
(1950-2000) for the 15 models to observations, which in this case was McCarran station. Based 
on the results presented below, 6 models: ACCESS1-0, CCSM4, CMCC-CMS, CNRM-CM5, 
HadGEM2-ES, and MPI-ESM-LR, were chosen for southern Nevada.  

3.3.1 Annual Seasonal Number of Wet Days 
As discussed, one of the evaluation criteria for selecting the GCMs, was the number of wet days 
in winter and summer. The two seasons were examined separately because precipitation in 
each season is generally caused by different weather patterns, and the skill of each individual 
GCM to represent the two seasons varied. The GCMs better represent the mean observed 
McCarran Airport number of wet days in summer than winter (Figure 3-3 and Figure 3-4). Most 
of the GCMs overproduce the number of wet days during winter and have a larger interannual 
variability than McCarran as demonstrated by the standard deviation of the number of wet 
days (Figure 3-5). More specifically, CNRM-CM5, HadGEM2-ES, CMCC-CM (not included in the 
final 6), and CanESM2 were the GCMs that were the most similar to McCarran, while BCC-
CSM1-1 and GFDL models were the least similar (Table 3-2). This remained largely true in 
summer, with the exception of the CanESM2 model, which did not perform as well during 
summer. Both ACCESS1-0 and MPI-ESM-LR models were moderately successful when compared 
to observations. Differences in the GCM rankings varied across the 4 grid boxes, as inherently 
some grid boxes were in drier locations and the latitude of the storm tracks varied in the GCMs. 
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Figure 3-3. The range in annual number of wet days in (top) December-January-February-March & 
(bottom) July-August-September for 15 GCMs from the NE grid box. The middle line is the mean, the top 
and bottom of the box are the 25th and 75th percentiles and the outer bounds are the maximum and 
minimum values. The orange models are the selected models and blue is McCarran for reference. 
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Figure 3-4. The mean number of wet days during winter (y-axis) and summer (x-axis) relative to the 
observed at McCarran for the 15 models analyzed for southern Nevada. The colored circles are the 
selected models and the open triangles are the models that were not selected. The green diamond 
represents McCarran. Most models had more wet days during winter than McCarran.  
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Figure 3-5. Same as Figure 3-4, but for the standard deviation of the number of wet days. Models 
generally had high winter variability relative to McCarran. 
 

3.3.2 Tmax Standard Deviation 
In comparing the 15 climate models to McCarran over the historical range 1950 to 2000, the 
year-by-year standard deviation of daily Tmax range for fall (October- November) most closely 
represented the McCarran range. During the other seasons, the models generally overestimate 
the range across the years of daily Tmax standard deviation. (Figure 3-6 and Figure 3-7). This is 
generally true for all four of the grid-boxes, though only the NE gridbox is shown. The four 
models that did the best job of capturing the historical variability were HadGEM2-CC, 
HadGEM2-ES, CMCC-CM and CMCC-CMS, however there is little agreement between what 
models did best for each season. The models that were in the mid-range include ACCESS1-0, 
CCSM4, CESM1-BGC and MPI-ESM-LR. The models that poorly represented Tmax standard 
deviation for all grids were CanESM2 and MIROC5.  
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Figure 3-6. The range in year-by-year standard deviation of daily Tmax for the four seasons for 15 GCMs 
from the NE grid box. The middle line is the mean, the top and bottom of the box are the 25th and 75th 
percentiles and the outer bounds are the maximum and minimum values. The orange models are the 
selected models and blue is McCarran for reference. 
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Figure 3-7. Top: the mean, across all years, of daily Tmax standard deviation calculated separately for 
each season and year. Bottom: the standard deviation of the time series of yearly values for the NW grid 
box. The figures on the left show the results for spring and fall and the figures on the right show the 
results for winter and summer.  
 

3.3.3 Climate Maps  
For each of the three extremes that were examined (the coldest winter months, the wettest 
winter months and heat waves), the models represented the observed atmospheric patterns 
better overall for the heatwaves and wet winter months, relative to the cold winter months. 
The performance amongst the models in capturing the atmospheric set-up was generally 
consistent amongst the extremes. The models that always ranked in the top 6 were ACCESS1-0, 
CCSM4, CMCC-CM, CMCC-CMS and GFDL-CM3. The models CanESM2, BCC-CSM1, and MIROC5 
consistently did poorly. 

3.3.4 Model Genetics and Other Considerations 
Table 3-2 shows the results of the selection criteria applied to the 15 models evaluated over 
southern Nevada. The final 6 selected models are shown in bold. Cases where a model was 
rejected due to having model genetics similar to another selected model are noted. The other 
consideration was the preference for models used in the 4th National Climate Assessment 
(USGCRP, 2018) because common models will allow for a comparison between the federal 
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project and this local focus. The models that were selected for this reason are noted as “Part of 
4th NCA.” 
 
Table 3-2. The results of the evaluation of based on the different variables. The models that did poorest 
are indicated by a blue shading, the best by a dark gold and the mid-range models by a light gold.  

Global 
Climate 
Model 

     

Wet Winter 
Months 

Wet Summer 
Months 

Tmax Standard 
Deviation 

Atmospheric 
Circulation 

Patterns 
Notes 

ACCESS1-0      
BCC-CSM1-1      
CanESM2     Part of 4th NCA* 
CCSM4     Part of 4th NCA* 
CESM1-BGC    No Data   
CESM1-CAM5    No Data  
CMCC-CM     model genetics 
CMCC-CMS      
CNRM-CM5      
GFDL-CM3      
GFDL-ESM2M      
HadGEM2-CC     model genetics 
HadGEM2-ES     Part of 4th NCA* 
MIROC5     Part of 4th NCA* 
MPI-ESM-LR      

*NCA – National Climate Assessment 
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Table 3-3. The blue highlighted cells indicate the evaluation step each model was eliminated in the 
evaluation process. The Global and Regional evaluation is explained in more detail in Cayan and Tyree, 
2016. The gold highlighted cells indicate the six models selected for this study. 

Global Climate 
Model 

Evaluation Step where Model was Removed from Consideration.  
Global Regional Southern Nevada 

ACCESS-1.0    
CCSM4    
CMCC-CMS    
CNRM-CM5    
HadGEM2-ES    
MPI-ESM-LR    
BCC-CSM1-1    
CanESM2    
CESM1-BGC    
CESM1-CAM5    
CMCC-CM    
GFDL-CM3    
GFDL-ESM2M    
HadGEM2-CC    
MIROC5    
BNU-ESM    
GFDL-ESM2G    
MRI-CGCM3    
NORESM1-M    
ACCESS1-3    
BCC-CSM1-1-M    
CSIRKO-MK3-6-0    
EC-EARTH    
FGOALS-G2    
INMCM4    
IPSL-CM5A-LR    
IPSL-CM5A-MR    
IPSL-CM5B-LR    
MIROC-ESM    
MIROC-ESM-CHEM    
MPI-ESM-MR    

 

3.4 Summary 
Research shows that as the number of models in an ensemble increases, the more likely the 
ensemble is to reflect long-term climate change rather than natural variability (Deser et al., 
2012; Pierce et al., 2009). “Ensemble” in this report refers to the average of multiple models 
through time. Using the full suite of available climate models is not realistic for SNWA because 
for every climate model added the number of analyses increases exponentially. However, 
selecting enough models, in this case six, was important to average out the natural climate 
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variability when using an ensemble (averaging of the models). This chapter describes the 
process used to arrive at a manageable number of models that will be used to characterize the 
range in future climate conditions in Clark, described in Chapter 4.  
 
The six models that were selected for southern Nevada are ACCESS1-0, CCSM4, CMCC-CMS, 
CNRM-CM5, HadGEM2-ES, and MPI-ESM-LR. The models were selected based on the three 
different evaluation components. Consideration was also given to those models used in the 4th 
National Climate Assessment. None of the models were ranked as “best” in all evaluation 
components, nor were any of the models selected in the bottom tier in any of the evaluation 
components.  
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4. Future Model Projections for Clark County 

4.1 Introduction 
Using the six global climate models (GCMs) that were previously selected in Chapter 3, this 
Chapter examines the magnitude and range in future climate projections for Clark County. 
Remaining consistent with the rest of report, this Chapter focuses on changes in maximum and 
minimum daily temperature (Tmax and Tmin) and precipitation.  

4.2 Methodology 
Downscaled GCM data, or localized constructed analogues (LOCA) data, is used to characterize 
a range of possible future Clark County climate conditions (Pierce et al., 2014; loca.ucsd.edu). 
The method used to develop LOCA data is described in Section 4.2.1 below. Future climate 
conditions are a function of the concentration of future GHG emissions, which depends on the 
global efforts to reduce GHG emissions. Two GHG emission scenarios are used to capture the 
range of possibilities of global GHG emissions. A high emission concentration scenario in which 
“business as usual” practices continue through the end of the century, and a low concentration 
scenario in which the world aggressively mitigates GHG emissions resulting in “significant GHG 
reductions” scenario. This is described in Section 4.2.2. For each emission scenario and each 
climate variable (e.g. Tmax, Tmin, precipitation), the ensemble of the six models selected in 
Chapter 3 are averaged through time. To show the uncertainty from model selection, the 
minimum and maximum across the six models for each climate variable for a given year is 
reported. To estimate the change in each climate variable through time, the change in the 
model’s 1976-2005 average historical simulation is compared to the model’s future simulation.  
The difference between the ensemble mean and natural variability is explained in Section 4.2.3.   

4.2.1 Downscaled data 
LOCA is a method of statistically downscaling larger GCM grids to 1/16th degree grids, at 6 km or 
3.9 mile resolution (Figure 4-1). This method uses historically observed relationships between 
large-scale and fine-scale weather patterns. Higher resolution downscaled data better captures 
the sub-regional variability that is a result of topography amongst other attributes including the 
type of precipitation event (i.e. large spatial storms versus localized thunderstorms produced by 
the Monsoon). In addition to downscaling, the LOCA methodology also bias corrects the models 
with respect to both magnitude and frequency. The bias correction used in the LOCA 
methodology has been shown to better preserve the original GCM projected future change as 
compared to other bias correction approaches (Pierce et al., 2015). The 4th National Climate 
Assessment and 4th California Climate Change Assessment are two of the several groups that 
are basing regional impact assessments on LOCA downscaled data.  
 
For clarification, the LOCA data used here is different from the non-downscaled data used in 
the Chapter 3. This Chapter and Chapter 3 have different objectives, justifying the use of the 
different data sets. In the model selection process (Chapter 3), the objective was to determine 
which models, without any bias correction, best represent Clark County’s historical climate. 
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Thus, data used in Chapter 3 were not bias corrected; they were only regridded to latitude and 
longitude grid cells of 2˚ by 2˚, similar to the native size GCM grid cells. For this Chapter, the 
objective is to show future climate projections for the region using the LOCA downscaling 
method, which represents the latest state of the science.  

 
Figure 4-1. Clark County, Nevada. The small squares represent the grid of the LOCA downscaled data set, 
which are approximately 6 km, or 3.9 miles.  

4.2.2 Emission Scenarios 
The global modeling community agreed to run each organizations’ (i.e. university, national 
laboratory, government agency) GCM under the same GHG emission scenarios in order to make 
the model runs, or simulations, comparable. The GHG emission scenarios are called 
Representative Concentration Pathways (RCP) with the larger numbers indicating more global 
warming potential (Figure 4-2). For this report, we are using RCP4.5 and RCP8.5, which can be 
considered a future with “significant GHG reductions” and a “business as usual” scenario, 
respectively. Current global CO2 emissions are on a trajectory above the RCP8.5 scenario.  
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Figure 4-2. Carbon dioxide, or CO2, annual emission for the different Representative Concentration 
Pathways (RCPs) or GHG scenarios. The two used in this report are RCP4.5 and RCP8.5. RCP4.5 assumes 
reductions in GHG emissions in the future, while RCP8.5 is considered the business as usual scenario. 
Note that the current level of global CO2 emissions is higher than RCP8.5. 
 

4.2.3 Ensemble Mean versus Natural Variability 
Every GCM includes a representation of the natural variability that occurs within the climate 
system. This variability results from large and small scale climate phenomenon interacting in 
unexpected ways on different time scales, from interannual, to decadal, to multi-decadal.  
Climate oscillations that affect natural variability include ENSO, the Pacific Decadal Oscillation, 
and the North American Oscillation amongst others. The occurrence of these natural 
oscillations impact future climate projections. Deser et al. (2012) estimated the uncertainty in 
natural variability for a given location. The authors ran the same model using the same forcing 
information 40 different times with slightly different initial atmospheric conditions out to 2060. 
The projected winter temperatures for Phoenix, AZ varied by ~3˚F by 2060 in the different 
model runs (Deser et al. 2012). The range in summer temperature was smaller, in large part 
because summer temperatures are less variable. In contrast, the large interannual variability in 
precipitation causes an even wider range of projected changes in precipitation, including some 
runs projecting wetter while other runs projecting drier conditions (Deser et al., 2012).  
 
Using an ensemble average, as is shown below, helps to decrease the influence of natural 
variability when examining long-term climate change trends as discussed in Chapter 3. The 
ensemble average, however, does not reproduce possible extreme conditions. Extreme climate 
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conditions generally result when rare climate phenomenon align and amplify impacts. This is 
why it is valuable to examine the extremes in individual models.  
 

4.3 Results 

4.3.1 Temperature Projections 
Daytime (nighttime) high temperature projections for Clark County, represented by Tmax (Tmin), 
are increasing through the end of the century. The simulated ensemble average for Tmax (Tmin) 
through time and each season, is plotted in Figure 4-3 (Figure 4-4). Figure 4-3 (Figure 4-4) 
illustrates the impact of climate scenarios RCP4.5 and RCP8.5 on Tmax (Tmin) in Clark County; 
specifically, the RCP scenarios diverge only after the middle of the century. The temperature 
projections for Clark County are generally consistent with projections for the state and 
southwest (California Fourth Climate Change Assessment, in prep.; Runkle et al., 2017). 
 
The average change in Tmax (Tmin) across the six GCMs is plotted in Figure 4-5 (Figure 4-6) for 
each RCP, time period, and season. The minimum and maximum bars represent the range of 
results from the climate models and indicate the uncertainty due to differences between the 
models. Generally, the range of model results for Tmin is smaller than for Tmax indicating there is 
more certainty in the projected Tmin changes. The projected change in the thirty-year average 
for Tmax (Tmin) is greatest during fall (Figure 4-5 (Figure 4-6)) followed by summer, spring and 
then winter. By the end of the century the ensemble mean annual Tmax (Tmin) increase is 5.0˚F 
(4.7 ˚F) for RCP4.5 and 8.6˚F (8.7 ˚F) for RCP8.5 (Table 4-1(Table 4-2)). The agreement between 
the models indicates that it is highly likely that annual average Tmin will warm by at least 2.0˚F 
relative to the baseline for the period 2010-2039.  
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Figure 4-3. The seasonal historical and future projections of Tmax from the six GCMs selected in the 
previous section for an area averaged over Clark County. The shaded area represents the window, or 
range, of the six models and the bold line is the ensemble mean, or average, of the six GCM projections. 
The black line shows the historical model runs, blue shows RCP4.5 and red shows RCP8.5. The dark green 
dashed line is the observations from the Livneh gridded data set (Livneh et al., 2015). 
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Figure 4-4. Same as Figure 4-3, but for Tmin.  
 
 

 
Figure 4-5. Projected change in 30-year average Tmax relative to the historical period of 1976-2005. The 
circles represent the ensemble average change, and the lower and upper bounds represent the minimum 
and maximum projected changes from the six GCM projections. The lighter color shows RCP4.5 and the 
darker color shows RCP8.5.  
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Figure 4-6. Same as Figure 4-5, but for Tmin.  
 
Table 4-1. Changes in Tmax (˚F) relative to 1976-2005 model historical climatology for Clark County. Only 
the 30-year ensemble average of all six GCM projections is shown. The first row is the ensemble average 
value of the historical model runs. Black values are for RCP4.5 and red values are RCP8.5. 

30-year Period Winter Spring Summer Fall Annual 
Historical  
Model Ave 56.5˚F 75.4˚F 98.3˚F 78.5˚F 77.2˚F 

2010-2039 1.8/2.5 2.3/2.0 2.2/2.5 2.5/2.8 2.2/2.4 
2020-2049 2.4/3.3 2.6/2.8 2.8/3.5 3.1/3.9 2.7/3.4 
2030-2059 3.1/4.0 3.1/3.9 3.4/4.5 3.7/5.1 3.3/4.4 
2040-2069 3.6/5.1 3.8/5.0 3.9/5.6 4.2/6.3 3.9/5.5 
2050-2079 4.2/6.2 4.2/5.9 4.4/6.5 4.8/7.5 4.4/6.5 
2060-2089 4.4/7.1 4.5/7.0 4.8/7.6 5.2/8.6 4.7/7.6 
2070-2099 4.8/7.8 4.7/8.0 4.9/8.7 5.4/9.8 5.0/8.6 

 
Table 4-2. Changes in Tmin (˚F) relative to 1976-2005 model historical climatology for Clark County. Table 
only shows the 30 –year ensemble average of all six GCMs projections. The first row is the ensemble 
average value of the historical model runs. Black values are for RCP4.5 and red values are RCP8.5. 

30-year Period Winter Spring Summer Fall Annual 
Historical  
Model Ave 31.4˚F 46.1˚F 66.8˚F 48.8˚F 48.3˚F 

2010-2039 1.7/2.5 1.7/1.8 2.4/2.7 2.2/2.6 2.0/2.4 
2020-2049 2.3/3.2 2.0/2.3 2.9/3.6 2.8/3.4 2.5/3.1 
2030-2059 3.0/3.9 2.6/3.2 3.5/4.7 3.5/4.8 3.2/4.2 
2040-2069 3.4/4.6 3.1/4.0 4.1/6.0 3.9/5.9 3.6/5.1 
2050-2079 3.8/5.7 3.5/5.1 4.6/7.3 4.4/7.4 4.1/6.4 
2060-2089 4.0/6.5 3.7/5.9 5.1/8.6 5.0/8.7 4.5/7.4 
2070-2099 4.2/7.6 3.9/7.0 5.3/10.0 5.4/10.3 4.7/8.7 

 
Historically, southern Nevada experiences more extreme temperatures per year than most 
places in the U.S. Simulations suggest the preponderance for extreme temperatures will only 
continue in the future. As Tmax (Tmin) increases (decreases), the number of days exceeding 
(below) certain temperature thresholds will also increase (decrease). Figure 4-7 (Figure 4-8) 
plots the number of days above (below) 100˚F, 105˚F, 110˚F, 115˚F and 120˚F (50˚F, 40˚F and 
32˚F) through time for RCP4.5 and RCP8.5. Each color band represents the range in the number 
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of days exceeding (below) the threshold across the six models.  The number of days exceeding 
100˚F are projected to increase by approximately 40 days in RCP4.5 and almost double to 
approximately 160 days in RCP8.5 (Figure 4-7) by the end of the century. According to the 
historic simulations, only approximately five days per year exceeds 115˚F in Clark County. In 
RCP8.5 the region could experience extreme temperatures almost 50 days of the year or 14 % 
of the time by the end of the century. The number of days below 50˚F is projected to decrease 
by approximately 40 days annually by 2100 under RCP4.5 and by 70 days under RCP8.5. The 
number of days below freezing are projected to decline from approximately 50 days per year to 
less than 30 days per year in RCP4.5 and to less than 5 days per year in RCP8.5 (Figure 4.8). 
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Figure 4-7. Each color band represents the range of the six GCM projections average number of days at 
or above the indicated temperature threshold (˚F) for RCP4.5 (right) and RCP8.5 (left). The range is 
calculated for each decade from 1950’s to the 2090’s. The Tmax is averaged over Clark County. The 
dashed line illustrates the division between the historical model scenarios and the future climate 
scenarios. 
 
 

 
Figure 4-8. Similar to Figure 4-7, but showing the number of days at or below the indicated temperature 
threshold (Tmin, ˚F). 
 

4.3.2 Precipitation 
Unlike temperature, annual and seasonal precipitation totals are variable among the models 
and changes in future precipitation are uncertain. The low precipitation totals along with the 
highly variable precipitation regime of Clark County makes precipitation projections for this 
region uncertain. This is reflected in the results. Nonetheless, there is some information that 

RCP4.5 RCP8.5 

RCP4.5 RCP8.5 
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can be gleaned from the projections. Most importantly, is that the precipitation regime will 
remain highly variable year-to-year and continue to be a primary characteristic of the local 
climate (Figure 4-9). Relative to the historical simulations (grey lines) future projections indicate 
more variable precipitation. The models generally agree that spring (March, April, May) 
precipitation will decrease in the future (Figure 4-10; Table 4-3). The small changes in the 
ensemble mean precipitation by decade is reiterated in Table 4-3. 
 

 
Figure 4-9. Same as Figure 4-3, but for seasonal precipitation totals.  
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Figure 4-10. Same as Figure 4-5, but for total seasonal precipitation in inches.  
 
Table 4-3. The seasonal precipitation change in inches relative to 1976-2005 model historical climatology 
for Clark County. Table only shows the 30-year ensemble average of the six GCMs projections. The first 
row is the ensemble average value of the historical model runs. Black values are for RCP4.5 and red 
values are RCP8.5. 

30-year Period Winter Spring Summer Fall Annual 

Historical  
Model Ave 2.2 in 1.6 in 1.4 in 1.5 in 6.7 in 

2010-2039 0.2/0.3 -0.1/-0.2 0/-0.1 0/0.1 0.1/0.1 
2020-2049 0.2/0.3 -0.1/-0.2 -0.1/-0.1 0/0 0.1/0 
2030-2059 0.3/0.3 -0.1/-0.2 0/-0.2 0.1/0.1 0.4/0.1 
2040-2069 0.3/0.2 -0.2/-0.3 0/-0.1 0.1/-0.1 0.2/-0.3 
2050-2079 0.3/0.2 -0.1/-0.3 0/-0.1 0/0 0.2/-0.2 
2060-2089 0.2/0.3 -0.2/-0.4 0/-0.1 0/0 0.1/-0.3 
2070-2099 0.2/0.6 -0.1/-0.4 0/-0.2 0.2/0.1 0.3/0.1 

 
 
Although modeling precipitation totals, especially for the small amounts that fall in this region, 
is challenging and highly uncertain, days when precipitation occurs within SNWA service area 
typically have reduced water demand. Therefore, analyzing the change in the number of wet 
days for each season may provide some information about future conditions for the water 
utility. Wet days are defined as days with precipitation totals exceeding 0.1 mm/day. Figure 4-
11 plots the spatial change in the number of wet days for each season for each RCP by the end 
of the century. The projections suggest that in general, winter and fall will have a similar 
number of wet days/year as historical simulations, while the number of wet days in spring and 
summer for both RCPs may increase by the end of the century. 
 
The change in the number of wet days per year for the fall suggests Clark County will not 
experience a seasonal shift in the Monsoon to later in the fall, which other studies on the 
Monsoon have suggested (Cook et al. 2013; Maloney et al. 2014). This inconsistency can be 
explained by the uncertainty in precipitation totals due to the small amount of precipitation 
that falls here annually, and the difference between the study locations. The previous work 
focused on the core Monsoon region, and did not include southern Nevada in the study region. 
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The discrepancy in the timing of the monsoon and what potentially makes southern Nevada 
different from the core monsoon regions is a topic that deserves more attention, but is beyond 
the scope of this study.  
 

 
Figure 4-11. The maps show the ensemble mean of the increase or decrease in the number of wet days at 
the end of the century (2070-2099) by season for RCP4.5 (top row) and RCP8.5 (bottom row). The brown 
colors indicate fewer wet days relative to the baseline (1976-2005) and the green colors indicate more 
wet days than the baseline. Similar to Chapter 3, a threshold of >1 mm/day was used to define a wet 
day.   
 
Despite occurring only infrequently in Clark County, extreme precipitation events were 
identified in Chapter 2 as being important contributing factors with respect to total 
precipitation (95th percentile) and flooding (99th percentile). The change in the number of 95th 
percentile and 99th percentile events relative to the baseline (1976-2005) are plotted in Figure 
4-12 and Figure 4-13, respectively. Future projections indicate that approximately 30 more 95th 
percentile events will occur each year in a 30-year period, or one more extreme event per year 
(Figure 4-12). For the 99th percentile events, Clark County is expected to see at most 15 more 
extreme events, depending on location, in a 30-year period (Figure 4-13). It should be noted 
that in terms of percentages, the change in the number of 95th percentile and 99th percentile 
events are significant. For example, McCarran historically has on average 41 95th percentile 
events throughout a 30-year period. This means an increase of 15 events in a 30-year period is 
an increase of 36%. Similarly, McCarran has approximately 10 99th percentile events over a 30-
year period. An increase by 5 events is a 50% increase in the number of extremes. 
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Figure 4-12. The 1976-2005 ensemble mean for the threshold of a 95thpercentile event is on the left. The 
maps on the right show the increase in number of days over the 30-year period that reach or exceed the 
threshold indicated on the historical map on the left.  
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Figure 4-13. Same as Figure 4-12, but for the 99th percentile events. Please note the color bar change in 
scale from Figure 4-12.  
 

4.3.3 Future Projections of El Niño Southern Oscillation (ENSO) 
A weak ENSO signal is identified in Chapter 2 as influencing climate variability in Clark County.  
Historically, El Niño (La Niña) events are associated with relatively cooler and wetter (warmer 
and drier) winters (Chapter 2). Changes in the ENSO frequency or intensity has the potential to 
impact Clark County. An analysis to evaluate relationships between projected temperature and 
precipitation magnitudes and frequencies relative to ENSO phasing is not conducted here. 
However, a brief review of literature provides some insight on conditions to expect in the 
future. 
 
Many GCM’s do not accurately represent the ocean-atmosphere relationship in the tropical 
Pacific Ocean, which makes understanding the future projections of ENSO difficult (Bellenger et 
al., 2014). Nonetheless, recent work suggests that the most intense El Niño events and La Niña 
events are projected to become more frequent in the future (Cai et al., 2014; Cai et al., 2015). 
With increased ENSO variability Clark County could experience more year-to-year variability in 
precipitation. 

4.4 Summary 
The projections for Clark County presented here broadly support research studies that have 
examined regional projections of climate change. The present projections show high certainty 
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that temperature will increase, though the exact amount is less certain, with the largest 
uncertainty from the global GHG emissions. Precipitation projections are less certain, in large 
part due to the high natural variability of the region, however, the projections suggest that the 
precipitation regime will become even more variable. Below are some key findings from 
examining the future projections.  
 
Based on the ensemble average projections, results suggest high temperatures in Clark County 
will warm between 4-10˚F by the end of the century depending on the GHG emission scenario.  
In the near-term (2010-2039), 2.0˚F or more warming is likely. Seasonally, fall will warm more 
rapidly than winter and spring, with summer warming almost as quickly. Fall daytime 
temperatures, in RCP8.5 are projected to increase by as much as 10˚F by the end of the 
century.  
 
By the end of the century in RCP8.5, the number of days above certain temperature thresholds 
is expected to increase in Clark County. The number of days exceeding 100˚F is projected to 
approximately double from 80 to 160 days. Under RCP8.5 models are projecting an 
approximate 10-fold increase in the number of days above 115˚F to about 50 days, or 14% of 
the time, on average.  
  
By the end of the century in RCP8.5, the number of days below certain temperature thresholds 
are expected to decline in Clark County. In RCP8.5, the number of days below 50˚F is projected 
to decrease by approximately 70 days by the end of the century. When air temperatures are 
below 50˚F turf grass goes dormant. Turf grass requires less water during dormancy, thus the 
decrease in days below 50˚F may cause an increase in water use. The number of days below 
freezing, below which water pipes freeze, are projected to decline by a factor of ten to 
approximately 5 days per year for RCP8.5.  
 
Precipitation is more uncertain. The projected changes in precipitation are small (on the order 
of +/- 1-2 inches) and highly variable. The projections indicate some seasonal differences in the 
future relative the baseline period, in particular that spring will become drier. Additionally, 
summer and spring indicate more wet days suggesting more days with little precipitation as the 
change in precipitation is small. This also does not indicate a shift in the monsoon season to 
later in fall for Southern Nevada.  
 
In Chapter 2, extreme precipitation events were identified as being important both with respect 
to total contribution to annual precipitation totals (95th percentile) and flooding (99th 
percentile). Previous research has projected that extreme events regionally and globally will 
increase because a warmer atmosphere can hold more moisture (Dominguez et al., 2012; Lau 
et al., 2013). Consistent with this research, the number of extreme precipitation events for 
Clark County is projected to increase. 
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5.Conclusions 
 
The SNWA’s operations and assets in Clark County could be impacted by changing future 
climate conditions. This study provides the SNWA with information about past and potential 
future climates in the Clark County, NV service area.  The main conclusions from the study are 
bulleted below. 
 
Findings based on evaluation of historic station data 

• Warming temperatures in Clark County are consistent with warming trends 
observed nationally and globally. The magnitude and pace of local warming is largely 
driven by warmer nighttime temperatures, although a weak upward trend in daytime 
temperatures is also present at some stations.  
• The small amount of precipitation that falls in southern Nevada falls primarily during 
the winter or late summer. At McCarran airport, 43% of the 4.2 inches/year fall during 
winter storms, while 22% falls during the July through September North American 
Monsoon season. 
• Annual precipitation totals from six weather stations around the region lack any 
visible or statistically significant trends. Annual precipitation totals vary significantly 
from year-to-year, although years with an increased frequency of the largest storms (5% 
wettest days) typically result in wet years.  
• Only a weak relationship between ENSO phase and climate in southern Nevada 
exists. La Niña events tend towards slightly warmer and drier conditions in Clark County, 
while there is a tendency towards cooler and wetter conditions during El Niño events. 
• Wet winter months and cold winter months often occur when a low-pressure 
system is present over Clark County. In contrast, heatwaves are typically associated with 
high-pressure systems over the southwestern U.S. 

 
Model selection results based on similarity between historic station data and historic GCM 
simulations 

• The selection methodology follows Cayan et al., (2015) to eliminate models based on 
Global Climatology, then based on Western U.S. climate. The final selection step uses 
local criteria to eliminate models down to six models. The local criteria used includes the 
standard deviation in daily Tmax by season, the number of wet days during the winter 
(DJFM) and North American Monsoon (JAS), and the atmospheric circulation patterns 
based on 500 hPa geopotential height anomalies for the 10 coldest months, the 10 
wettest months, and the top 10 3-day heat waves 
• The six models used to characterize future climate in Clark County, include: 
ACCESS1-0, CCSM4, CMCC-CMS, CNRM-CM5, HadGEM2-ES, and MPI-ESM-LR 

 
Findings based on the evaluation of downscaled future climate simulations 

• A similar rate of warming is expected in the near term (prior to 2050) regardless of 
GHG concentrations. It is only after the middle of the century that the benefits of 
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implementing a strong mitigation policy today would be gained (maximum temperature 
rise of only 5.0˚F instead of 8.6˚F).  
• In the near term (period 2010-2039) nighttime temperatures will very likely warm by 
2.0˚F relative to the baseline (1976-2005).  This increase can be considered the 
minimum amount of temperature rise for planning purposes going forward. 
• In contrast to the projections for Clark County which warm more in the fall, 
projections over California and the southwest report greater summer warming in the 
future compared to other seasons. Future studies to understand the cause for seasonal 
and regional differences may help us better adapt to potential future changes.  
• The number of days exceeding 100˚F are projected to nearly double by the end of 
the century. Clark county could experience triple digit temperatures approximately 45% 
of the time. This could have significant impacts on outdoor workforce health.  A large 
number of SNWA’s employees work outdoors. SNWA may need to manage outdoor 
workforce schedules differently. 
• By the end of the century Clark County could experience a 10-fold increase in days 
over 115˚F.  Consecutive number of days above 115˚F reduces the efficiency of 
equipment and the efficiency of power transmission. SNWA requires significant energy 
to pump, treat and distribute drinking water.  These temperatures put critical assets at 
risk of failure. 
•  In the future outdoor landscape may require more water than today due to a longer 
growing season (days above 50 ˚F). Given the magnitude of warming relative to the 
magnitude of precipitation change, it is likely water demand will be more sensitive to 
temperatures.  
• Projected changes in precipitation are small and highly uncertain, in large part due 
to the large natural interannual and decadal precipitation variability in the region, but 
also because this variable is difficult to model given GCM resolution.  
• The projections suggest that winter and fall will have a similar number of wet 
days/year relative to historical simulations, while the number of wet days in spring and 
summer may increase by the end of the century. If the summer becomes wetter or 
more humid at the same time it becomes hotter (by as much as 10˚F), cooling units and 
other electronics may experience more failures or be less efficient.  
• Model projections suggest large precipitation events (95th percentile and 99th 
percentile events) will occur more frequently in the future. 
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6. Recommended Next Steps 
 
Climate Monitoring Stations 
This study relied heavily on the long-term data from the McCarran station, because it was the 
longest and most complete record available.  Additional climate stations in Clark County would 
provide a broader, long-term data set that could be used for comparison to modeled data, 
allow for greater trend comparisons and yield enhanced, spatially gridded datasets.   
 
The McCarran data demonstrated a stronger, upward trend in minimum daily temperatures 
than surrounding stations and is also the only station in the study with a continuous and long-
term temperature record in a more urbanized area. As suggested, the increased upward trend 
in minimum temperatures may be due to urban heat island. Additional high density monitoring 
will be important to understand how urban heat island may be impacting areas with various 
development densities, as well as, discerning data biases due to location, shading, surrounding 
infrastructure, irrigation, etc (Meene et al., 2009).  Establishing additional stations now may not 
provide immediate benefits, but the longer the stations operate, the more useful the data will 
become –allowing for more comprehensive analyses on how climate is changing locally.  
 
Wind and humidity were two additional climatic variables that were noted to be important to 
SNWA, though neither were highlighted in the report, due to the reliability of these variables in 
current GCM models. As GCMs improve, it will be important to have reliable wind and humidity 
data to evaluate changes in these parameters which are used to compute and evaluate 
evaporative demand.  Enhancing trends and projections of evaporative demand may help 
SNWA assess changes in vegetation water demands and efficiency of equipment operated by 
SNWA.  Ensuring new stations have humidity and wind sensors will further the understanding 
of regional microclimates and allow for interpretation of climate variables, not yet modeled 
consistently.    
 
On-going coordination between CNAP and SNWA  
Throughout this research project, SNWA and CNAP have engaged in mutually beneficial 
information exchanges to better understand how climate may or may not influence SNWA’s 
operations.  Several variables that are important to SNWA operations were discussed but 
extended beyond the scope of the original project. These include relative humidity, an 
evaporative demand index (exact variable to be determined), and number of days above and 
below certain operational temperature thresholds, yet to be determined. The CNAP team has 
additional downscaled data and hydrological runs that SNWA may find useful. Continuing the 
established dialogue between the two agencies would continue to produce analyses and 
information that would help SNWA meet its climate resilience objectives.   
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Appendix 
 
1. Boulder City 

 
 

 
 
 
 
Figure A1-1. The total annual 
rainfall in inches. The dashed 
line is the average annual 
rainfall over the entire period 
of record. The height of the 
entire bar represents the total 
annual precipitation and the red 
part is the contribution for the 
95th percentile events.  The 95th 
percentile event threshold for 
this location is 0.69 inches.  

 
 

 
 

 
 
 
A1-2. The blue bars show the 
average monthly percent 
contribution to the total 
annual rainfall. Thus all 12 
bars total 100%. The red line 
is the number of extreme 
precipitation events, or 99th 
percentile events from 1961-
1990. The 99th percentile 
event threshold is 1.13 inches.  
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Figure A1-3.  The graphs depict the median monthly Tmax (oF) (left) and Tmin (right) at the Boulder City 
station represented by the circles. Monthly values from 1981-2010 are averaged for each month (January 
to December). The line illustrates the range of temperatures in the 10th to 90th percentiles. The diamonds 
represent the maximum and minimum Tmax values over the 1981-2010 time period. 

 
Figure A1-4. Each panel shows the monthly average Tmax (˚F) for each year of record at 
Boulder City.  
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Figure A1-5. Each panel shows the monthly average Tmin (˚F) for each year of record at 
Boulder City.  
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Figure A1-6. Each panel shows the accumulated precipitation (in) for each year of record at 
Boulder City.  
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Figure A1-7. Each panel shows the monthly sum of the total number of freezing days for each 
year of record at Boulder City. The maximum in Jan, March, October, and December is 31 days.  
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Figure A1-8. Each panel shows the variance (standard deviation squared) in Tmax during a given 
month at Boulder City.  
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Figure A1-9. Each panel shows the variance (standard deviation squared) in Tmin during a given 
month at Boulder City.  
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A1-10. The bars illustrate the number of days above a temperature threshold in May, June, July, August and September of a given year. The purple 
bar indicates the number of days above 100˚F, the red bar is the number of days above 105˚F, the yellow bar is the number of days above 110˚F 
and the green is the number of days above 115˚F. The last panel depicts the number of days above these thresholds from May through September 
through time. 
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Figure A1-11. The bars illustrate the number of days below a temperature threshold in November, December, January, February and 
March of a given year. The purple bar represents the number of days below 32˚F, the green bar represents number of days below 40˚F, 
the yellow bar is the number of days below 50˚F. The maximum number of days for January, March and December is 31. 
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2. Desert National Wildlife Range 
 

 
Figure A2-1. Each panel shows the monthly average Tmax (˚F) for each year of record at 
Desert National Wildlife Range.  
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Figure A2-2. Each panel shows the monthly average Tmin (˚F) for each year of record at 
Desert National Wildlife Range.  
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Figure A2-3. Each panel shows the monthly sum of precipitation (in) for each year of 
record at Desert National Wildlife Range.  
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Figure A2-4. Each panel shows the monthly sum of the total number of freezing days for 
each year of record at Desert National Wildlife Range. The maximum in Jan, March, 
October, and December is 31 days.  
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Figure A2-5. Each panel shows the variance (standard deviation squared) in Tmax during 
a given month at Desert Wildlife Range.  
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Figure A2-6. Each panel shows the variance (standard deviation squared) in Tmin during 
a given month at Desert Wildlife Range.
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A2-7. The bars illustrate the number of days above a temperature threshold in May, June, July, August and September of a given year. The purple 
bar indicates the number of days above 100˚F, the red bar is the number of days above 105˚F, the yellow bar is the number of days above 110˚F 
and the green is the number of days above 115˚F. The last panel depicts the number of days above these thresholds from May through September 
through time. 
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Figure A2-8. The bars illustrate the number of days below a temperature threshold in November, December, January, February and March of a 
given year. The purple bar represents the number of days below 32˚F, the green bar represents number of days below 40˚F, the yellow bar is the 
number of days below 50˚F. The maximum number of days for January, March and December is 31. 
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3. Kingman 
 
 

 
 
Figure A3-1.  The graphs depict the median monthly Tmax (oF) (left) and Tmin (right) at the 
Kingman station represented by the circles. Monthly values from 1981-2010 are averaged for 
each month (January to December). The line illustrates the range of temperatures in the 10th to 
90th percentiles. The diamonds represent the maximum and minimum Tmax values over the 1981-
2010 time period.  
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Figure A3-2. Each panel shows the monthly average Tmax (˚F) for each year of record at 
Kingman.  
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Figure A3-3. Each panel shows the monthly average Tmax (˚F) for each year of record at 
Kingman.  
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Figure A3-4. The bars illustrate the number of days above a temperature threshold in May, June, 
July, August and September of a given year. The purple bar indicates the number of days above 
100˚F, the red bar is the number of days above 105˚F, the yellow bar is the number of days above 
110˚F and the green is the number of days above 115˚F. The last panel depicts the number of 
days above these thresholds from May through September through time. 
 

 
 
 
Figure A4-11. The bars illustrate the number of days below a temperature threshold in November, 
December, January, February and March of a given year. The purple bar represents the number of 
days below 32˚F, the green bar represents number of days below 40˚F, the yellow bar is the 
number of days below 50˚F. The maximum number of days for January, March and December is 
31. 
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4. Laughlin 

 
 

Figure A4-1. The total annual 
rainfall in inches. The dashed 
line is the average annual 
rainfall over the entire period 
of record. The height of the 
entire bar represents the total 
annual precipitation and the 
red part is the contribution 
for the 95%tile events.  The 
threshold of what the 95%tile 
event is 0.97 inches.  

 
 

 
 
 

 
 
A4-2. The blue bars 
show the average 
monthly percent 
contribution of all 
precipitation, to the 
total annual rainfall. 
Thus all 12 bars 
total 100%. The red 
line is the number 
of extreme 
precipitation 
events, or 99th 
percentile events 
from 1961-1990. 
The 99th percentile 
threshold is 1.48 
inches.  
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Figure A4-3.  The graphs depict the median monthly Tmax (oF) (left) and Tmin (right) at the 
Laughlin station represented by the red circles. Monthly values from 1981-2010 are averaged for 
each month (January to December). The line illustrates the range of temperatures in the 10th to 
90th percentiles. The diamonds represent the maximum and minimum Tmax values over the 1981-
2010 time period.  

 

 
Figure A4-4. Each panel shows the monthly average Tmax (˚F) for each year of record at 
Laughlin.  



 100 

 
Figure A4-5. Each panel shows the monthly average Tmin (˚F) for each year of record at 
Laughlin. 
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Figure A4-6. Each panel shows the monthly average precipitation (in) for each year of 
record at Laughlin. 
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Figure A4-7. Each panel shows the monthly sum of the total number of freezing days for 
each year of record at Laughlin. The maximum in Jan, March, October, and December is 
31 days.  
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Figure A4-8. Each panel shows the variance (standard deviation squared) in Tmax during 
a given month at Laughlin.  
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Figure A4-9. Each panel shows the variance (standard deviation squared) in Tmin during 
a given month at Laughlin.  
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A4-10. The bars illustrate the number of days above a temperature threshold in May, June, July, August and September of a given year. The purple 
bar indicates the number of days above 100˚F, the red bar is the number of days above 105˚F, the yellow bar is the number of days above 110˚F 
and the green is the number of days above 115˚F. The last panel depicts the number of days above these thresholds from May through September 
through time. 
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Figure A4-11. The bars illustrate the number of days below a temperature threshold in November, December, January, February and March of a 
given year. The purple bar represents the number of days below 32˚F, the green bar represents number of days below 40˚F, the yellow bar is the 
number of days below 50˚F. The maximum number of days for January, March and December is 31. 
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5. McCarran 
 

 
Figure A5-1. Each panel shows the monthly average Tmax (˚F) for each year of record at 
McCarran.  
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Figure A5-2. Each panel shows the monthly average Tmin (˚F) for each year of record at 
McCarran. 
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Figure A5-3. Each panel shows the monthly accumulated precipitation (in) for each year 
of record at McCarran. 
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Figure A5-4. Each panel shows the monthly sum of the total number of freezing days for 
each year of record at McCarran. The maximum in Jan, March, October, and December is 
31 days.  
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Figure A5-5. Each panel shows the variance (standard deviation squared) in during a 
given month for the McCarran for Tmax. 
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Figure A5-6. Each panel shows the variance (standard deviation squared) in Tmin during 
a given month at McCarran.  
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Figure A5-7. The bars illustrate the number of days above a temperature threshold in May, June, July, August and September of a given year. The 
purple bar indicates the number of days above 100˚F, the red bar is the number of days above 105˚F, the yellow bar is the number of days above 
110˚F and the green is the number of days above 115˚F. The last panel depicts the number of days above these thresholds from May through 
September through time. 
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Figure A5-8. The bars illustrate the number of days below a temperature threshold in November, December, January, February and March of a 
given year. The purple bar represents the number of days below 32˚F, the green bar represents number of days below 40˚F, the yellow bar is the 
number of days below 50˚F. The maximum number of days for January, March and December is 31. 
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6. Mount Charleston 
 

 
Figure A6-1. Each panel shows the monthly average Tmax (˚F) for each year of record at 
Mount Charleston.  
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Figure A6-2. Each panel shows the monthly average Tmin (˚F) for each year of record at 
Mount Charleston.  
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Figure A6-3. Each panel shows the monthly average precipitation (in) for each year of 
record at Mount Charleston. 
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Figure A6-4. Each panel shows the monthly sum of the total number of freezing days for 
each year of record at Mount Charleston. The maximum in Jan, March, October, and 
December is 31 days. 
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Figure A6-5. Each panel shows the variance (standard deviation squared) in Tmax during 
a given month at Mount Charleston. 
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Figure A6-6. Each panel shows the variance (standard deviation squared) in Tmin during 
a given month at Mount Charleston.
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Figure A6-7. The bars illustrate the number of days below a temperature threshold in November, December, January, February and March of a 
given year at Mount Charleston. The purple bar represents the number of days below 32˚F, the green bar represents number of days below 40˚F, 
the yellow bar is the number of days below 50˚F. The maximum number of days for January, March and December is 31.
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7. Needles 
 
 Figure A7-1. The total annual 
rainfall in inches. The dashed 
line is the average annual 
rainfall over the entire period 
of record. The height of the 
entire bar represents the total 
annual precipitation and the 
red part is the contribution for 
the 95th percentile events. 
 
 
 
 
 
 
Figure A7-2. The blue bars 
show the average monthly 
percent contribution to the 
total annual rainfall. Thus all 
12 bars total 100%. The red 
line is the number of extreme 
precipitation events, or 99th 
percentile events from 1961-
1990.  
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Figure A7-3. The graphs depict the median monthly Tmax (oF) (left) and Tmin (right) at the 
Needles station represented by the circles. Monthly values from 1981-2010 are averaged for each 
month (January to December). The line illustrates the range of temperatures in the 10th to 90th 
percentiles. The diamonds represent the maximum and minimum Tmax values over the 1981-2010 
time period. 
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Figure A7-4. Each panel shows the monthly average Tmax (˚F) for each year of record at 
the Needles station.  
 



 125 

 
 
Figure A7-5. Each panel shows the monthly average Tmin (˚F) for each year of record at 
the Needles station.  
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Figure A7-6. Each panel shows the monthly average precipitation (in) for each year of 
record at the Needles station. 
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Figure A7-7. Each panel shows the monthly sum of the total number of freezing days for 
each year of record at the Needles station. The maximum in Jan, March, October, and 
December is 31 days.  
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Figure A7-8. Each panel shows the variance (standard deviation squared) in Tmax during 
a given month at the Needles station.  
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Figure A7-9. Each panel shows the variance (standard deviation squared) in Tmin during 
a given month at the Needles station.  
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Figure A7-10. The bars illustrate the number of days above a temperature threshold in May, June, July, August and September of a given year. The 
purple bar indicates the number of days above 100˚F, the red bar is the number of days above 105˚F, the yellow bar is the number of days above 
110˚F and the green is the number of days above 115˚F. The last panel depicts the number of days above these thresholds from May through 
September through time. 
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Figure A7-11. The bars illustrate the number of days below a temperature threshold in November, December, January, February and March of a 
given year. The purple bar represents the number of days below 32˚F, the green bar represents number of days below 40˚F, the yellow bar is the 
number of days below 50˚F. The maximum number of days for January, March and December is 31.
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8. Overton 
Figure A8-1. The total 
annual rainfall in inches. 
The dashed line is the 
average annual rainfall 
over the entire period of 
record. The height of the 
entire bar represents the 
total annual precipitation 
and the red part is the 
contribution for the 95th 
percentile events.   
 
 
 
 
 
 

 
 

 
Figure A8-2. The blue 
bars show the average 
monthly percent 
contribution to the total 
annual rainfall. Thus all 
12 bars total 100%. The 
red line is the number of 
extreme precipitation 
events, or 99th percentile 
events from 1961-1990.  
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Figure A8-3.  For each month (January to December) from 1994-2015, the mean monthly Tmax 
(oF) (left) and Tmin (right) represented by the red circles whereas the line illustrates the range of 
temperatures in the 10th to 90th percentiles. The diamonds represent the maximum and minimum 
Tmax values over the 1994-2015 time period.  
 

 
 
Figure A8-4. Each panel shows the monthly average Tmax (˚F) for each year of record at the 
Overton station.  
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Figure A8-5. Each panel shows the monthly average Tmin (˚F) for each year of record at the 
Overton station. 
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Figure A8-6. Each panel shows the monthly average precipitation (in) for each year of record at 
the Overton station. 
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Figure A8-7. Each panel shows the monthly sum of the total number of freezing days for each 
year of record at the Overton station. The maximum in Jan, March, October, and December is 31 
days.  
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Figure A8-8. Each panel shows the variance (standard deviation squared) in Tmax during a given 
month at the Overton station.  
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Figure A8-9. Each panel shows the variance (standard deviation squared) in Tmin during a given 
month at the Overton station.  
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Figure A8-10. The bars illustrate the number of days above a temperature threshold in May, June, July, 
August and September of a given year. The purple bar indicates the number of days above 100˚F, the red 
bar is the number of days above 105˚F, the yellow bar is the number of days above 110˚F and the green is 
the number of days above 115˚F. The last panel depicts the number of days above these thresholds from 
May through September through time. 
 

 
Figure A8-11. The bars illustrate the number of days below a temperature threshold in November, 
December, January, February and March of a given year. The purple bar represents the number of days 
below 32˚F, the green bar represents number of days below 40˚F, the yellow bar is the number of days 
below 50˚F. The maximum number of days for January, March and December is 31. 
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9. Red Rock Springs 
 

 
Figure A9-1. Each panel shows the monthly average Tmax (˚F) for each year of record at the 
Red Rock station.  
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Figure A9-2. Each panel shows the monthly average precipitation (in) for each year of record at 
the Red Rock station. 
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Figure A9-3. Each panel shows the monthly sum of the total number of freezing days for each 
year of record at the Red Rock station. The maximum in Jan, March, October, and December is 
31 days. 
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Figure A9-4. Each panel shows the variance (standard deviation squared) in Tmax during a given 
month at the Red Rock station. 
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Figure A9-5. Each panel shows the variance (standard deviation squared) in Tmin during a given 
month at the Red Rock station. 
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Figure A9-6. The bars illustrate the number of days above a temperature threshold in May, June, July, 
August and September of a given year. The purple bar indicates the number of days above 100˚F, the red 
bar is the number of days above 105˚F, the yellow bar is the number of days above 110˚F and the green is 
the number of days above 115˚F. The last panel depicts the number of days above these thresholds from 
May through September through time. 
 
 

 
Figure A9-7. The bars illustrate the number of days below a temperature threshold in November, 
December, January, February and March of a given year. The purple bar represents the number of days 
below 32˚F, the green bar represents number of days below 40˚F, the yellow bar is the number of days 
below 50˚F. The maximum number of days for January, March and December is 31 
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10. Searchlight 
 

 
 
Figure A10-1. Each panel shows the monthly average Tmax (˚F) for each year of record at the 
Searchlight station.  
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Figure A10-2. Each panel shows the monthly average Tmin (˚F) for each year of record at the 
Searchlight station.  
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Figure A10-3. Each panel shows the monthly average precipitation (in) for each year of record at 
the Searchlight station. 
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Figure A10-4. Each panel shows the monthly sum of the total number of freezing days for each 
year of record at the Searchlight station. The maximum in Jan, March, October, and December is 
31 days. 
 
 
 
 



 150 

 
Figure A10-5. Each panel shows the variance (standard deviation squared) in Tmax during a 
given month at the Searchlight station. 
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Figure A10-6. Each panel shows the variance (standard deviation squared) in Tmin during a 
given month at the Searchlight station. 
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Figure A10-7. The bars illustrate the number of days above a temperature threshold in May, June, July, 
August and September of a given year. The purple bar indicates the number of days above 100˚F, the red 
bar is the number of days above 105˚F, the yellow bar is the number of days above 110˚F and the green is 
the number of days above 115˚F. The last panel depicts the number of days above these thresholds from 
May through September through time. 
 
 
 

 
Figure A10-8. The bars illustrate the number of days below a temperature threshold in November, 
December, January, February and March of a given year. The purple bar represents the number of days 
below 32˚F, the green bar represents number of days below 40˚F, the yellow bar is the number of days 
below 50˚F. The maximum number of days for January, March and December is 31. 
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11. Valley of Fire 
 

 
Figure A11-1. Each panel shows the monthly average Tmax (˚F) for each year of record at the 
Valley of Fire station. 
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Figure A11-2. Each panel shows the monthly average Tmin (˚F) for each year of record at the 
Valley of Fire station. 
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Figure A11-3. Each panel shows the monthly average precipitation (in) for each year of record at 
the Valley of Fire station. 
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Figure A11-4. Each panel shows the monthly sum of the total number of freezing days for each 
year of record at the Valley of Fire station. The maximum in Jan, March, October, and December 
is 31 days. 
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Figure A11-5. Each panel shows the variance (standard deviation squared) in Tmax during a 
given month at the Valley of Fire station. 
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Figure A11-6. Each panel shows the variance (standard deviation squared) in Tmin during a 
given month at the Valley of Fire station. 
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Figure A11-7. The bars illustrate the number of days above a temperature threshold in May, June, July, 
August and September of a given year. The purple bar indicates the number of days above 100˚F, the red 
bar is the number of days above 105˚F, the yellow bar is the number of days above 110˚F and the green is 
the number of days above 115˚F. The last panel depicts the number of days above these thresholds from 
May through September through time. 
 

 
Figure A11-8. The bars illustrate the number of days below a temperature threshold in November, 
December, January, February and March of a given year. The purple bar represents the number of days 
below 32˚F, the green bar represents number of days below 40˚F, the yellow bar is the number of days 
below 50˚F. The maximum number of days for January, March and December is 31. 
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